BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2843243)

  • 1. A new high potential redox transition for cytochrome aa3.
    Hendler RW; Sidhu GS
    Biophys J; 1988 Jul; 54(1):121-33. PubMed ID: 2843243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of two low Em forms of cytochrome a3 and their carbon monoxide complexes in mammalian cytochrome c oxidase.
    Sidhu GS; Hendler RW
    Biophys J; 1990 Jun; 57(6):1125-40. PubMed ID: 2168220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the spectra and redox properties of pure cytochromes aa3.
    Hendler RW; Reddy KV; Shrager RI; Caughey WS
    Biophys J; 1986 Mar; 49(3):717-29. PubMed ID: 3008873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High voltage redox properties of cytochrome c oxidase.
    Hendler RW; Sidhu GS; Pardhasaradhi K
    Biophys J; 1990 Oct; 58(4):957-67. PubMed ID: 2174273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. Cytochromes aa3.
    Reddy KV; Hendler RW; Bunow B
    Biophys J; 1986 Mar; 49(3):705-15. PubMed ID: 3008872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near infrared spectral changes of cytochrome aa3 during potentiometric titrations.
    Hendler RW; Harmon PA; Levin IW
    Biophys J; 1994 Dec; 67(6):2493-500. PubMed ID: 7696488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulometric and potentiometric evaluation of the redox components of cytochrome c oxidase in situ.
    Wilson DF; Nelson D
    Biochim Biophys Acta; 1982 Jun; 680(3):233-41. PubMed ID: 6285964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and spectral studies with the two-subunit cytochrome aa3 from Paracoccus denitrificans. Comparison with the 13-subunit beef heart enzyme.
    Pardhasaradhi K; Ludwig B; Hendler RW
    Biophys J; 1991 Aug; 60(2):408-14. PubMed ID: 1655082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The b-type cytochromes.
    Reddy KV; Hendler RW
    J Biol Chem; 1983 Jul; 258(14):8568-81. PubMed ID: 6863301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The c1-cytochromes.
    Reddy KV; Hendler RW
    Biophys J; 1986 Mar; 49(3):693-703. PubMed ID: 3008871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors determining electron-transfer rates in cytochrome c oxidase: studies of the FQ(I-391) mutant of the Rhodobacter sphaeroides enzyme.
    Adelroth P; Mitchell DM; Gennis RB; Brzezinski P
    Biochemistry; 1997 Sep; 36(39):11787-96. PubMed ID: 9305969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichannel analysis of single-turnover kinetics of cytochrome aa3 reduction of O2.
    Bose S; Hendler RW; Shrager RI; Chan SI; Smith PD
    Biochemistry; 1997 Mar; 36(9):2439-49. PubMed ID: 9054548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation and assignment of peroxy and ferryl intermediates in the reduction of dioxygen to water by cytochrome c oxidase.
    Morgan JE; Verkhovsky MI; Wikström M
    Biochemistry; 1996 Sep; 35(38):12235-40. PubMed ID: 8823156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of nitrite on cytochrome oxidase].
    Markosian KA; Paitian NA; Nalbandian RM
    Biokhimiia; 1981 Sep; 46(9):1615-21. PubMed ID: 6271265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometry of carbon monoxide binding by cytochrome c oxidase.
    Wharton DC; Gibson QH
    J Biol Chem; 1976 May; 251(9):2861-2. PubMed ID: 177424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox state of cytochrome aa3 in isolated perfused rat kidney.
    Epstein FH; Balaban RS; Ross BD
    Am J Physiol; 1982 Oct; 243(4):F356-63. PubMed ID: 6289677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.