BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28432553)

  • 1. Cardiolipin deficiency causes triacylglycerol accumulation in Saccharomyces cerevisiae.
    Yadav PK; Rajasekharan R
    Mol Cell Biochem; 2017 Oct; 434(1-2):89-103. PubMed ID: 28432553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae.
    Kamisaka Y; Tomita N; Kimura K; Kainou K; Uemura H
    Biochem J; 2007 Nov; 408(1):61-8. PubMed ID: 17688423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae.
    Horvath SE; Wagner A; Steyrer E; Daum G
    Biochim Biophys Acta; 2011 Dec; 1811(12):1030-7. PubMed ID: 21875690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis.
    Raja V; Joshi AS; Li G; Maddipati KR; Greenberg ML
    J Biol Chem; 2017 Jan; 292(3):1092-1102. PubMed ID: 27941023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Phospholipid:Diacylglycerol Acyltransferase-Mediated Acyl-Coenzyme A-Independent Pathway Efficiently Diverts Fatty Acid Flux from Phospholipid into Triacylglycerol in Escherichia coli.
    Wang L; Jiang S; Chen WC; Zhou XR; Huang TX; Huang FH; Wan X
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DGA1 gene determines a second triglyceride synthetic pathway in yeast.
    Oelkers P; Cromley D; Padamsee M; Billheimer JT; Sturley SL
    J Biol Chem; 2002 Mar; 277(11):8877-81. PubMed ID: 11751875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative function of Fmp30, Mdm31, and Mdm32 in Ups1-independent cardiolipin accumulation in the yeast Saccharomyces cerevisiae.
    Miyata N; Goda N; Matsuo K; Hoketsu T; Kuge O
    Sci Rep; 2017 Nov; 7(1):16447. PubMed ID: 29180659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253.
    Polburee P; Ohashi T; Tsai YY; Sumyai T; Lertwattanasakul N; Limtong S; Fujiyama K
    Microbiology (Reading); 2018 Jan; 164(1):1-10. PubMed ID: 29182511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acyl-CoA:cholesterol acyltransferase (ACAT)-related gene is involved in the accumulation of triacylglycerols in Saccharomyces cerevisiae.
    Sandager L; Dahlqvist A; Banaś A; Ståhl U; Lenman M; Gustavsson M; Stymne S
    Biochem Soc Trans; 2000 Dec; 28(6):700-2. PubMed ID: 11171176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired biosynthesis of the non-bilayer lipids phosphatidylethanolamine or cardiolipin does not affect peroxisome biogenesis and proliferation in Saccharomyces cerevisiae.
    Kawałek A; Jagadeesan C; van der Klei IJ
    Biochem Biophys Res Commun; 2016 Nov; 480(2):228-233. PubMed ID: 27746175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin.
    Rijken PJ; Houtkooper RH; Akbari H; Brouwers JF; Koorengevel MC; de Kruijff B; Frentzen M; Vaz FM; de Kroon AI
    J Biol Chem; 2009 Oct; 284(40):27609-19. PubMed ID: 19656950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage lipid synthesis is non-essential in yeast.
    Sandager L; Gustavsson MH; Ståhl U; Dahlqvist A; Wiberg E; Banas A; Lenman M; Ronne H; Stymne S
    J Biol Chem; 2002 Feb; 277(8):6478-82. PubMed ID: 11741946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae.
    Sorger D; Daum G
    J Bacteriol; 2002 Jan; 184(2):519-24. PubMed ID: 11751830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.
    Athenstaedt K
    Biochim Biophys Acta; 2011 Oct; 1811(10):587-96. PubMed ID: 21782973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of two type-1 diacylglycerol acyltransferase (DGAT1) genes from rice (Oryza sativa) embryo restoring the triacylglycerol accumulation in yeast.
    Bhunia RK; Sinha K; Chawla K; Randhawa V; Sharma TR
    Plant Mol Biol; 2021 Feb; 105(3):247-262. PubMed ID: 33089420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for Remodeling of the Acyl Chain Composition of Cardiolipin Catalyzed by Saccharomyces cerevisiae Tafazzin.
    Abe M; Hasegawa Y; Oku M; Sawada Y; Tanaka E; Sakai Y; Miyoshi H
    J Biol Chem; 2016 Jul; 291(30):15491-502. PubMed ID: 27268057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate.
    Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO
    Biotechnol Bioeng; 2013 Jan; 110(1):343-7. PubMed ID: 22886471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase.
    Greer MS; Truksa M; Deng W; Lung SC; Chen G; Weselake RJ
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2243-53. PubMed ID: 25520169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function.
    Raja V; Salsaa M; Joshi AS; Li Y; van Roermund CWT; Saadat N; Lazcano P; Schmidtke M; Hüttemann M; Gupta SV; Wanders RJA; Greenberg ML
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 May; 1864(5):654-661. PubMed ID: 30731133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.