These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 28432790)
1. Single-molecule visualization of fast polymerase turnover in the bacterial replisome. Lewis JS; Spenkelink LM; Jergic S; Wood EA; Monachino E; Horan NP; Duderstadt KE; Cox MM; Robinson A; Dixon NE; van Oijen AM Elife; 2017 Apr; 6():. PubMed ID: 28432790 [TBL] [Abstract][Full Text] [Related]
2. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Reyes-Lamothe R; Sherratt DJ; Leake MC Science; 2010 Apr; 328(5977):498-501. PubMed ID: 20413500 [TBL] [Abstract][Full Text] [Related]
4. Exchange between Escherichia coli polymerases II and III on a processivity clamp. Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641 [TBL] [Abstract][Full Text] [Related]
5. The E. coli DNA Replication Fork. Lewis JS; Jergic S; Dixon NE Enzymes; 2016; 39():31-88. PubMed ID: 27241927 [TBL] [Abstract][Full Text] [Related]
6. Frequent exchange of the DNA polymerase during bacterial chromosome replication. Beattie TR; Kapadia N; Nicolas E; Uphoff S; Wollman AJ; Leake MC; Reyes-Lamothe R Elife; 2017 Mar; 6():. PubMed ID: 28362256 [TBL] [Abstract][Full Text] [Related]
7. The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli. Leu FP; Hingorani MM; Turner J; O'Donnell M J Biol Chem; 2000 Nov; 275(44):34609-18. PubMed ID: 10924523 [TBL] [Abstract][Full Text] [Related]
8. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells. Moolman MC; Krishnan ST; Kerssemakers JW; van den Berg A; Tulinski P; Depken M; Reyes-Lamothe R; Sherratt DJ; Dekker NH Nat Commun; 2014 Dec; 5():5820. PubMed ID: 25520215 [TBL] [Abstract][Full Text] [Related]
9. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. Stukenberg PT; O'Donnell M J Biol Chem; 1995 Jun; 270(22):13384-91. PubMed ID: 7768940 [TBL] [Abstract][Full Text] [Related]
10. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Yano ST; Rothman-Denes LB Mol Microbiol; 2011 Mar; 79(5):1325-38. PubMed ID: 21205014 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of Proofreading by the E. coli Pol III Replicase. Park J; Jergic S; Jeon Y; Cho WK; Lee R; Dixon NE; Lee JB Cell Chem Biol; 2018 Jan; 25(1):57-66.e4. PubMed ID: 29104063 [TBL] [Abstract][Full Text] [Related]
12. A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. Furukohri A; Goodman MF; Maki H J Biol Chem; 2008 Apr; 283(17):11260-9. PubMed ID: 18308729 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a triple DNA polymerase replisome. McInerney P; Johnson A; Katz F; O'Donnell M Mol Cell; 2007 Aug; 27(4):527-38. PubMed ID: 17707226 [TBL] [Abstract][Full Text] [Related]
14. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp. Le TT; Furukohri A; Tatsumi-Akiyama M; Maki H Sci Rep; 2017 Oct; 7(1):12755. PubMed ID: 29038530 [TBL] [Abstract][Full Text] [Related]
15. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. Yao NY; O'Donnell M Mol Biosyst; 2008 Nov; 4(11):1075-84. PubMed ID: 18931783 [TBL] [Abstract][Full Text] [Related]
16. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Wawrzycka A; Gross M; Wasaznik A; Konieczny I Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4188-96. PubMed ID: 26195759 [TBL] [Abstract][Full Text] [Related]
17. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Indiani C; McInerney P; Georgescu R; Goodman MF; O'Donnell M Mol Cell; 2005 Sep; 19(6):805-15. PubMed ID: 16168375 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Exchange of Two Essential DNA Polymerases during Replication and after Fork Arrest. Li Y; Chen Z; Matthews LA; Simmons LA; Biteen JS Biophys J; 2019 Feb; 116(4):684-693. PubMed ID: 30686488 [TBL] [Abstract][Full Text] [Related]
19. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed. Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the efficiency of synthesis past single bulky DNA adducts in vivo and in vitro by the polymerase III holoenzyme. Latham GJ; McNees AG; De Corte B; Harris CM; Harris TM; O'Donnell M; Lloyd RS Chem Res Toxicol; 1996; 9(7):1167-75. PubMed ID: 8902273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]