These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2843285)

  • 1. Evidence that mineralized spherules are involved in the formation of the superficial layer of the elasmoid scale in cichlids Cichlasoma octofasciatum and Hemichromis bimaculatus (Pisces, Teleostei): an epidermal active participation?
    Sire JY
    Cell Tissue Res; 1988 Jul; 253(1):165-72. PubMed ID: 2843285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for participation of the epidermis in the deposition of superficial layer of scales in zebrafish (Danio rerio): A SEM and TEM study.
    Sire JY; Quilhac A; Bourguignon J; Allizard F
    J Morphol; 1997 Feb; 231(2):161-174. PubMed ID: 29852665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The same cell lineage is involved in scale formation and regeneration in the teleost fish Hemichromis bimaculatus.
    Sire JY
    Tissue Cell; 1989; 21(3):447-62. PubMed ID: 18620270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus.
    Quilhac A; Sire JY
    Anat Rec; 1999 Mar; 254(3):435-51. PubMed ID: 10096676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and origin of basal lamina and anchoring fibrils in adult human skin.
    Briggaman RA; Dalldorf FG; Wheeler CE
    J Cell Biol; 1971 Nov; 51(21):384-95. PubMed ID: 4939526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of mouse lip epidermis after cryo treatment. Hemidesmosome formation and HSPG (heparan sulfate proteoglycan) distribution in basement membrane.
    Osawa T; Abe M; Wang Y; Nozaka Y
    Cells Tissues Organs; 2000; 167(1):9-17. PubMed ID: 10899711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrastructural study of connective tissue in mollusc integument: I. Bivalvia.
    Bairati A; Comazzi M; Gioria M
    Tissue Cell; 2000 Oct; 32(5):425-36. PubMed ID: 11201282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the osteoderms in the Gekko: Tarentola mauritanica.
    Levrat-Calviac V; Zylberberg L
    Am J Anat; 1986 Aug; 176(4):437-46. PubMed ID: 3751949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure of the epidermal basement membrane of the lip: applications of dithiothreitol separation and ultrathin frozen sectioning.
    Osawa T; Nozaka Y
    Acta Anat (Basel); 1995; 153(2):106-10. PubMed ID: 8560962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules.
    Heatfield BM; Travis DF
    J Morphol; 1975 Jan; 145(1):13-49. PubMed ID: 1111423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of basement membrane in recombinants of epidermis and dermis of chick embryonic skin in vitro: an electron microscopic study.
    Akimoto Y; Obinata A; Endo H; Hirano H
    Anat Rec; 1991 Nov; 231(3):375-82. PubMed ID: 1763819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the basement membrane and formation of collagen fibrils below the placodes in the head of anuran larvae.
    Osawa T; Feng XY; Yamamoto M; Nozaka M; Nozaka Y
    J Morphol; 2003 Feb; 255(2):244-52. PubMed ID: 12474269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and fine structure of the bony scutes in Corydoras arcuatus (Siluriformes, callichthyidae).
    Sire JY
    J Morphol; 1993 Mar; 215(3):225-244. PubMed ID: 29865442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems.
    Lee DY; Cho KH
    Arch Dermatol Res; 2005 Jan; 296(7):296-302. PubMed ID: 15650892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of human epidermis in vitro is accompanied by transient activation of basal keratinocyte spreading.
    Grinnell F; Toda K; Lamke-Seymour C
    Exp Cell Res; 1987 Oct; 172(2):439-49. PubMed ID: 3653266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata).
    Zylberberg L; Castanet J
    J Morphol; 1985 Dec; 186(3):327-342. PubMed ID: 29991191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Most anchoring fibrils in human skin originate and terminate in the lamina densa.
    Shimizu H; Ishiko A; Masunaga T; Kurihara Y; Sato M; Bruckner-Tuderman L; Nishikawa T
    Lab Invest; 1997 Jun; 76(6):753-63. PubMed ID: 9194852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and post-transplantation differentiation of human keratinocytes grown on the human type IV collagen film of a bilayered dermal substitute.
    Tinois E; Tiollier J; Gaucherand M; Dumas H; Tardy M; Thivolet J
    Exp Cell Res; 1991 Apr; 193(2):310-9. PubMed ID: 2004647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basement membrane and human epidermal differentiation in vitro.
    Guo M; Grinnell F
    J Invest Dermatol; 1989 Sep; 93(3):372-8. PubMed ID: 2475548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of the epidermal basement membrane after enzymatic dermal-epidermal separation of embryonic mouse skin.
    Bard S; Sengel P
    Arch Anat Microsc Morphol Exp; 1984; 73(4):239-57. PubMed ID: 6537737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.