These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28432914)

  • 1. Adaptive optimization of ultrasound beamforming sound velocity using sub-aperture differential phase gradient.
    Shen CC; Yang HC
    Ultrasonics; 2017 Aug; 79():52-59. PubMed ID: 28432914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic transmit aperture beamforming for sound velocity estimation using channel-domain differential phase gradient - A phantom study.
    Shen CC; Hsiao SH; Lin YC
    Ultrasonics; 2019 Apr; 94():183-191. PubMed ID: 30385046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apodized adaptive beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Apr; 44(2):155-165. PubMed ID: 28084559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual stage beamforming in the absence of front-end receive focusing.
    Bera D; Bosch JG; Verweij MD; de Jong N; Vos HJ
    Phys Med Biol; 2017 Jul; 62(16):6631-6648. PubMed ID: 28604358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of penetration of modified amplitude and phase estimation beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Jan; 44(1):3-11. PubMed ID: 27443916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y; Wang Y; Yu J; Guo Y
    Biomed Eng Online; 2019 Apr; 18(1):48. PubMed ID: 31014338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autocorrelation-based generalized coherence factor for low-complexity adaptive beamforming.
    Shen CC; Xing YQ; Jeng G
    Ultrasonics; 2016 Dec; 72():177-83. PubMed ID: 27566140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of subaperture beamforming on phase coherence imaging.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1779-90. PubMed ID: 25389157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging.
    Yoon C; Lee Y; Chang JH; Song TK; Yoo Y
    Ultrasonics; 2011 Oct; 51(7):795-802. PubMed ID: 21459400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial phantom study on estimation of speed of sound in medium using coherence among received echo signals.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2019 Jul; 46(3):297-307. PubMed ID: 30848399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VLSI circuits for adaptive digital beamforming in ultrasound imaging.
    Karaman M; Atalar A; Koymen H
    IEEE Trans Med Imaging; 1993; 12(4):711-20. PubMed ID: 18218466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A split-aperture transmit beamforming technique with phase coherence grating lobe suppression.
    Torbatian Z; Adamson R; Bance M; Brown JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2588-95. PubMed ID: 21041146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-complexity and robust minimum variance beamformer for ultrasound imaging systems using beamspace dominant mode rejection.
    Vaidya AS; Srinivas MB
    Ultrasonics; 2020 Feb; 101():105979. PubMed ID: 31513962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive imaging using an optimal receive aperture size.
    Li ML; Huang SW; Ustüner K; Li PC
    Ultrason Imaging; 2005 Apr; 27(2):111-27. PubMed ID: 16231840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography.
    Ahmed R; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2057-2068. PubMed ID: 32746171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverging beam transmit through limited aperture: A method to reduce ultrasound system complexity and yet obtain better image quality at higher frame rates.
    Lokesh B; Thittai AK
    Ultrasonics; 2019 Jan; 91():150-160. PubMed ID: 30146322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution.
    Shen CC
    Ultrasonics; 2021 Apr; 112():106345. PubMed ID: 33465594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [An adaptive ultrasound sound speed optimization based on image contrast analysis].
    Li X; Liu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1094-7, 1109. PubMed ID: 22295692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.