These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 28432954)
1. Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Shahzad R; Tao Q; Dzyubachyk O; Staring M; Lelieveldt BPF; van der Geest RJ Med Image Anal; 2017 Jul; 39():44-55. PubMed ID: 28432954 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images. Yilmaz P; Wallecan K; Kristanto W; Aben JP; Moelker A J Digit Imaging; 2018 Oct; 31(5):670-679. PubMed ID: 29524154 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of cardiac biventricular segmentation from multiaxis MRI data: a multicenter study. Lötjönen JM; Järvinen VM; Cheong B; Wu E; Kivistö S; Koikkalainen JR; Mattila JJ; Kervinen HM; Muthupillai R; Sheehan FH; Lauerma K J Magn Reson Imaging; 2008 Sep; 28(3):626-36. PubMed ID: 18777544 [TBL] [Abstract][Full Text] [Related]
4. SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Sun X; Garg P; Plein S; van der Geest RJ Med Phys; 2021 Apr; 48(4):1750-1763. PubMed ID: 33544895 [TBL] [Abstract][Full Text] [Related]
5. Unsupervised fully automated inline analysis of global left ventricular function in CINE MR imaging. Theisen D; Sandner TA; Bauner K; Hayes C; Rist C; Reiser MF; Wintersperger BJ Invest Radiol; 2009 Aug; 44(8):463-8. PubMed ID: 19561514 [TBL] [Abstract][Full Text] [Related]
6. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Avendi MR; Kheradvar A; Jafarkhani H Med Image Anal; 2016 May; 30():108-119. PubMed ID: 26917105 [TBL] [Abstract][Full Text] [Related]
7. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024 [TBL] [Abstract][Full Text] [Related]
8. Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. Queirós S; Barbosa D; Engvall J; Ebbers T; Nagel E; Sarvari SI; Claus P; Fonseca JC; Vilaça JL; D'hooge J Eur Heart J Cardiovasc Imaging; 2016 Oct; 17(10):1118-27. PubMed ID: 26494877 [TBL] [Abstract][Full Text] [Related]
9. Detecting left ventricular impaired relaxation in cardiac MRI using moving mesh correspondences. Punithakumar K; Ben Ayed I; Afshin M; Goela A; Islam A; Li S; Boulanger P; Becher H; Noga M Comput Methods Programs Biomed; 2016 Feb; 124():58-66. PubMed ID: 26614019 [TBL] [Abstract][Full Text] [Related]
10. Assessment of deep learning segmentation for real-time free-breathing cardiac magnetic resonance imaging at rest and under exercise stress. Schilling M; Unterberg-Buchwald C; Lotz J; Uecker M Sci Rep; 2024 Feb; 14(1):3754. PubMed ID: 38355969 [TBL] [Abstract][Full Text] [Related]
11. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149 [TBL] [Abstract][Full Text] [Related]
12. An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images. Ma Y; Wang L; Ma Y; Dong M; Du S; Sun X Int J Comput Assist Radiol Surg; 2016 Nov; 11(11):1951-1964. PubMed ID: 27295053 [TBL] [Abstract][Full Text] [Related]
13. Model-based automatic segmentation algorithm accurately assesses the whole cardiac volumetric parameters in patients with cardiac CT angiography: a validation study for evaluating the accuracy of the workstation software and establishing the reference values. Mao SS; Li D; Vembar M; Gao Y; Luo Y; Lam F; Syed YS; Liu C; Woo K; Flores F; Budoff MJ Acad Radiol; 2014 May; 21(5):639-47. PubMed ID: 24703477 [TBL] [Abstract][Full Text] [Related]
14. Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming. Liu H; Hu H; Xu X; Song E Acad Radiol; 2012 Jun; 19(6):723-31. PubMed ID: 22465463 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of a new method for semi-quantitative assessment of right ventricular ejection fraction by cardiovascular magnetic resonance: right ventricular fractional diameter changes. Vermes E; Rebotier N; Piquemal M; Pucheux J; Delhommais A; Alison D; Genée O Eur J Radiol; 2014 Jan; 83(1):130-4. PubMed ID: 24252456 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of short-axis cardiac MRI automatically derived from scout acquisitions in free-breathing and breath-holding modes. Danilouchkine MG; Westenberg JJ; Lelieveldt BP; Reiber JH MAGMA; 2005 Mar; 18(1):7-18. PubMed ID: 15682287 [TBL] [Abstract][Full Text] [Related]
17. Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Soliman OI; Kirschbaum SW; van Dalen BM; van der Zwaan HB; Mahdavian Delavary B; Vletter WB; van Geuns RJ; Ten Cate FJ; Geleijnse ML Am J Cardiol; 2008 Sep; 102(6):778-83. PubMed ID: 18774006 [TBL] [Abstract][Full Text] [Related]
18. Efficient method for analyzing MR real-time cines: Toward accurate quantification of left ventricular function. Wu Y; Jiang K; Zhang N; Gao Y; Chen Y; Zheng H; Liu X; Chung YC J Magn Reson Imaging; 2015 Oct; 42(4):972-80. PubMed ID: 25727686 [TBL] [Abstract][Full Text] [Related]
19. Image-based clustering and connected component labeling for rapid automated left and right ventricular endocardial volume extraction and segmentation in full cardiac cycle multi-frame MRI images of cardiac patients. Goyal A Med Biol Eng Comput; 2019 Jun; 57(6):1213-1228. PubMed ID: 30690663 [TBL] [Abstract][Full Text] [Related]
20. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]