These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2843296)

  • 1. Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold.
    Amati BB; Gasser SM
    Cell; 1988 Sep; 54(7):967-78. PubMed ID: 2843296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear scaffold attachment stimulates, but is not essential for ARS activity in Saccharomyces cerevisiae: analysis of the Drosophila ftz SAR.
    Amati B; Pick L; Laroche T; Gasser SM
    EMBO J; 1990 Dec; 9(12):4007-16. PubMed ID: 2123454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARS binding factor I of the yeast Saccharomyces cerevisiae binds to sequences in telomeric and nontelomeric autonomously replicating sequences.
    Biswas SB; Biswas EE
    Mol Cell Biol; 1990 Feb; 10(2):810-5. PubMed ID: 2405256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae.
    Ng R; Carbon J
    Mol Cell Biol; 1987 Dec; 7(12):4522-34. PubMed ID: 2830498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica.
    Vernis L; Poljak L; Chasles M; Uchida K; Casarégola S; Käs E; Matsuoka M; Gaillardin C; Fournier P
    J Mol Biol; 2001 Jan; 305(2):203-17. PubMed ID: 11124900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective excision of the centromere chromatin complex from Saccharomyces cerevisiae.
    Kenna M; Amaya E; Bloom K
    J Cell Biol; 1988 Jul; 107(1):9-15. PubMed ID: 2839524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts.
    Amati B; Gasser SM
    Mol Cell Biol; 1990 Oct; 10(10):5442-54. PubMed ID: 2118998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer.
    Diffley JF; Stillman B
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2120-4. PubMed ID: 3281162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies on centromeres in the yeast Saccharomyces cerevisiae.
    Ng R; Ness J; Carbon J
    Basic Life Sci; 1986; 40():479-92. PubMed ID: 3032143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica.
    Fournier P; Abbas A; Chasles M; Kudla B; Ogrydziak DM; Yaver D; Xuan JW; Peito A; Ribet AM; Feynerol C
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4912-6. PubMed ID: 8506336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional selection and analysis of yeast centromeric DNA.
    Hieter P; Pridmore D; Hegemann JH; Thomas M; Davis RW; Philippsen P
    Cell; 1985 Oct; 42(3):913-21. PubMed ID: 2996783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of a replication origin from Saccharomyces cerevisiae: identification of a new replication enhancer.
    Raychaudhuri S; Byers R; Upton T; Eisenberg S
    Nucleic Acids Res; 1997 Dec; 25(24):5057-64. PubMed ID: 9396816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin conformation of yeast centromeres.
    Bloom KS; Amaya E; Carbon J; Clarke L; Hill A; Yeh E
    J Cell Biol; 1984 Nov; 99(5):1559-68. PubMed ID: 6092387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-dependent modulation of replication activity of Saccharomyces cerevisiae autonomously replicating sequences by transcription factors.
    Kohzaki H; Ito Y; Murakami Y
    Mol Cell Biol; 1999 Nov; 19(11):7428-35. PubMed ID: 10523631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for binding of at least two factors, including T-rich strand-binding factor(s) to the single-stranded ARS1 sequence in Saccharomyces cerevisiae.
    Kuno K; Kuno S; Matsushima K; Murakami S
    Mol Gen Genet; 1991 Nov; 230(1-2):45-8. PubMed ID: 1745242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila ARSs contain the yeast ARS consensus sequence and a replication enhancer.
    Mills JS; Kingsman AJ; Kingsman SM
    Nucleic Acids Res; 1986 Aug; 14(16):6633-48. PubMed ID: 3092187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of conserved sequence elements in yeast centromere DNA.
    Panzeri L; Landonio L; Stotz A; Philippsen P
    EMBO J; 1985 Jul; 4(7):1867-74. PubMed ID: 2992949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes.
    Tanaka S; Halter D; Livingstone-Zatchej M; Reszel B; Thoma F
    Nucleic Acids Res; 1994 Sep; 22(19):3904-10. PubMed ID: 7937110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-DNA interactions at a yeast replication origin.
    Diffley JF; Cocker JH
    Nature; 1992 May; 357(6374):169-72. PubMed ID: 1579168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of a yeast centromere-binding protein that is able to distinguish single base-pair mutations in its recognition site.
    Cai MJ; Davis RW
    Mol Cell Biol; 1989 Jun; 9(6):2544-50. PubMed ID: 2668736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.