These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28432971)

  • 21. Strategies to improve the photocatalytic activity of TiO
    Lee K; Yoon H; Ahn C; Park J; Jeon S
    Nanoscale; 2019 Apr; 11(15):7025-7040. PubMed ID: 30920558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity.
    Wang Z; Guan W; Sun Y; Dong F; Zhou Y; Ho WK
    Nanoscale; 2015 Feb; 7(6):2471-9. PubMed ID: 25567239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3 N4 Nanosheets under Visible Light.
    Shi L; Chang K; Zhang H; Hai X; Yang L; Wang T; Ye J
    Small; 2016 Aug; 12(32):4431-9. PubMed ID: 27410192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of self-supported three-dimensional TiO2 sheeted networks with enhanced photocatalytic activity.
    Zhang X; Hu C; Bai H; Yan Y; Li J; Yang H; Lu X; Xi G
    Sci Rep; 2013 Dec; 3():3563. PubMed ID: 24356418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres.
    Barrio J; Shalom M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39688-39694. PubMed ID: 30384593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme?
    Meng S; Ning X; Zhang T; Chen SF; Fu X
    Phys Chem Chem Phys; 2015 May; 17(17):11577-85. PubMed ID: 25864380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C+Fe as an example.
    Zhang S; Li J; Zeng M; Li J; Xu J; Wang X
    Chemistry; 2014 Jul; 20(31):9805-12. PubMed ID: 24989942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts.
    Ma J; Liu K; Yang X; Jin D; Li Y; Jiao G; Zhou J; Sun R
    ChemSusChem; 2021 Nov; 14(22):4903-4922. PubMed ID: 34636483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced photocatalytic performance of an Ag3PO4 photocatalyst via fullerene modification: first-principles study.
    Luo CY; Huang WQ; Xu L; Yang YC; Li X; Hu W; Peng P; Huang GF
    Phys Chem Chem Phys; 2016 Jan; 18(4):2878-86. PubMed ID: 26733154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Etching-induced highly porous polymeric carbon nitride with enhanced photocatalytic hydrogen evolution.
    Wang X; Xia Y; Wang H; Jiao X; Chen D
    Chem Commun (Camb); 2021 Apr; 57(34):4138-4141. PubMed ID: 33908464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper Phthalocyanine-Functionalized Graphitic Carbon Nitride: A Hybrid Heterostructure toward Photoelectrochemical and Photocatalytic Degradation Applications.
    Liu ZG; Wan JY; Yang Z; Wang SQ; Wang HX
    Chem Asian J; 2016 Jul; 11(13):1887-91. PubMed ID: 27305072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance.
    Yu J; Yang B; Cheng B
    Nanoscale; 2012 Apr; 4(8):2670-7. PubMed ID: 22422167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light.
    Liang Q; Li Z; Bai Y; Huang ZH; Kang F; Yang QH
    Small; 2017 Mar; 13(9):. PubMed ID: 27936314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Porous Aerogel Constructed by g-C3N4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance.
    Tong Z; Yang D; Shi J; Nan Y; Sun Y; Jiang Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25693-701. PubMed ID: 26545166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?
    Zhang Y; Tang ZR; Fu X; Xu YJ
    ACS Nano; 2010 Dec; 4(12):7303-14. PubMed ID: 21117654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies.
    Zhang B; Zhao TJ; Wang HH
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34922-34929. PubMed ID: 31476855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst.
    Luo G; Jiang X; Li M; Shen Q; Zhang L; Yu H
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2161-8. PubMed ID: 23429892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts.
    Ma SS; Hisatomi T; Maeda K; Moriya Y; Domen K
    J Am Chem Soc; 2012 Dec; 134(49):19993-6. PubMed ID: 23181266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance.
    Cheng F; Yan J; Zhou C; Chen B; Li P; Chen Z; Dong X
    J Colloid Interface Sci; 2016 Apr; 468():103-109. PubMed ID: 26835580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance.
    Pan J; Guo L; Zhang S; Wang N; Jin S; Tan B
    Chem Asian J; 2018 Jul; 13(13):1674-1677. PubMed ID: 29709107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.