These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28433017)

  • 1. Correlation of the fragility of metallic liquids with the high temperature structure, volume, and cohesive energy.
    Gangopadhyay AK; Pueblo CE; Dai R; Johnson ML; Ashcraft R; Van Hoesen D; Sellers M; Kelton KF
    J Chem Phys; 2017 Apr; 146(15):154506. PubMed ID: 28433017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids.
    Mauro NA; Kelton KF
    Rev Sci Instrum; 2011 Mar; 82(3):035114. PubMed ID: 21456796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous thermal contraction of the first coordination shell in metallic alloy liquids.
    Gangopadhyay AK; Blodgett ME; Johnson ML; McKnight J; Wessels V; Vogt AJ; Mauro NA; Bendert JC; Soklaski R; Yang L; Kelton KF
    J Chem Phys; 2014 Jan; 140(4):044505. PubMed ID: 25669553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: an energy landscape interpretation.
    Bendert JC; Gangopadhyay AK; Mauro NA; Kelton KF
    Phys Rev Lett; 2012 Nov; 109(18):185901. PubMed ID: 23215298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural fragility-a correlation between structures and dynamics in metallic liquids and glasses.
    Kelton KF
    J Phys Condens Matter; 2017 Jan; 29(2):023002. PubMed ID: 27841996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.
    Mauro NA; Vogt AJ; Derendorf KS; Johnson ML; Rustan GE; Quirinale DG; Kreyssig A; Lokshin KA; Neuefeind JC; An K; Wang XL; Goldman AI; Egami T; Kelton KF
    Rev Sci Instrum; 2016 Jan; 87(1):013904. PubMed ID: 26827330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of the fragility and heat capacity jump in the supercooled liquid region with the shear modulus relaxation in metallic glasses.
    Makarov AS; Qiao JC; Kobelev NP; Aronin AS; Khonik VA
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33910186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse correlation between cohesive energy and thermal expansion coefficient in liquid transition metal alloys.
    Gangopadhyay AK; Bendert JC; Mauro NA; Kelton KF
    J Phys Condens Matter; 2012 Sep; 24(37):375102. PubMed ID: 22842287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-evaluation of thermal expansion measurements of metallic liquids and glasses from x-ray scattering experiments.
    Gangopadhyay AK; Kelton KF
    J Chem Phys; 2018 May; 148(20):204509. PubMed ID: 29865799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids.
    Jaiswal A; Egami T; Kelton KF; Schweizer KS; Zhang Y
    Phys Rev Lett; 2016 Nov; 117(20):205701. PubMed ID: 27886481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural signature of liquid fragility.
    Mauro NA; Blodgett M; Johnson ML; Vogt AJ; Kelton KF
    Nat Commun; 2014 Aug; 5():4616. PubMed ID: 25098937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic basis for cluster kinetics: Prediction of the fragility of marginal metallic glass-forming liquids.
    Hu L; Bian X; Qin X; Yue Y; Zhao Y; Wang C
    J Phys Chem B; 2006 Nov; 110(43):21950-7. PubMed ID: 17064164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interatomic repulsion softness directly controls the fragility of supercooled metallic melts.
    Krausser J; Samwer KH; Zaccone A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13762-7. PubMed ID: 26504208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of fragility of supercooled liquids with elastic properties of glasses.
    Novikov VN; Ding Y; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible structural signature of the onset of cooperativity in metallic liquids.
    Dai R; Ashcraft R; Kelton KF
    J Chem Phys; 2018 May; 148(20):204502. PubMed ID: 29865850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids.
    Pueblo CE; Sun M; Kelton KF
    Nat Mater; 2017 Aug; 16(8):792-796. PubMed ID: 28692041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic connection to the fragility of glass-forming liquids.
    Martinez LM; Angell CA
    Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in Relationship with Their Properties.
    Louzguine-Luzgin DV
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration correlation governs slow dynamics of supercooled metallic liquids.
    Hu YC; Li YW; Yang Y; Guan PF; Bai HY; Wang WH
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6375-6380. PubMed ID: 29866833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.