These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28433037)

  • 1. Directed motion from particle size oscillations inside an asymmetric channel.
    Makhnovskii YA; Sheu SY; Yang DY; Lin SH
    J Chem Phys; 2017 Apr; 146(15):154103. PubMed ID: 28433037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel.
    Makhnovskii YA
    Phys Rev E; 2019 Mar; 99(3-1):032102. PubMed ID: 30999518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratchet effect for two-dimensional nanoparticle motion in a corrugated oscillating channel.
    Radtke M; Netz RR
    Eur Phys J E Soft Matter; 2016 Nov; 39(11):116. PubMed ID: 27896498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steering the potential barriers: entropic to energetic.
    Burada PS; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051128. PubMed ID: 21230458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased Brownian motion in narrow channels with asymmetry and anisotropy.
    Peng Z; To K
    Phys Rev E; 2016 Aug; 94(2-1):022902. PubMed ID: 27627375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion by stopping: rectifying Brownian motion of nonspherical particles.
    Sporer S; Goll C; Mecke K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011917. PubMed ID: 18763992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directing Brownian motion by oscillating barriers.
    Bleil S; Reimann P; Bechinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031117. PubMed ID: 17500678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current in a three-dimensional periodic tube with unbiased forces.
    Ai BQ; Liu LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051114. PubMed ID: 17279884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: drift velocity of Brownian particle in a periodically tapered tube induced by a time-periodic force with zero mean: dependence on the force period.
    Zitserman VY; Berezhkovskii AM; Antipov AE; Makhnovskii YA
    J Chem Phys; 2011 Sep; 135(12):121102. PubMed ID: 21974505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding directs the motion of small molecules inside cells.
    Smith S; Cianci C; Grima R
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28615492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-dependent mobility and entropic rectification in tubes of periodically varying geometry.
    Dagdug L; Berezhkovskii AM; Makhnovskii YA; Zitserman VY; Bezrukov SM
    J Chem Phys; 2012 Jun; 136(21):214110. PubMed ID: 22697533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion-limited binding to a site on the wall of a membrane channel.
    Dagdug L; Berezhkovskii AM
    J Chem Phys; 2006 Dec; 125(24):244705. PubMed ID: 17199366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic transport without external force in confined channel with oscillatory boundary.
    Ding H; Jiang H; Hou Z
    J Chem Phys; 2015 Dec; 143(24):244119. PubMed ID: 26723663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic splitter for particle separation.
    Reguera D; Luque A; Burada PS; Schmid G; Rubí JM; Hänggi P
    Phys Rev Lett; 2012 Jan; 108(2):020604. PubMed ID: 22324667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the performance of the entropic splitter for particle separation.
    Motz T; Schmid G; Hänggi P; Reguera D; Rubí JM
    J Chem Phys; 2014 Aug; 141(7):074104. PubMed ID: 25149772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian motion of an asymmetrical particle in a potential field.
    Grima R; Yaliraki SN
    J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.