BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28433179)

  • 21. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals.
    Guo J; Guo X; Wang S; Yin Y
    Carbohydr Polym; 2016 Jan; 135():248-55. PubMed ID: 26453875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
    Reid MS; Villalobos M; Cranston ED
    Langmuir; 2017 Feb; 33(7):1583-1598. PubMed ID: 27959566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H
    Wang H; Du H; Liu K; Liu H; Xu T; Zhang S; Chen X; Zhang R; Li H; Xie H; Zhang X; Si C
    Carbohydr Polym; 2021 Aug; 266():118107. PubMed ID: 34044925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of cellulose nanocrystals from rice straw.
    Lu P; Hsieh YL
    Carbohydr Polym; 2012 Jan; 87(1):564-573. PubMed ID: 34663005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals.
    Gabriel T; Wondu K; Dilebo J
    PLoS One; 2021; 16(2):e0246794. PubMed ID: 33561156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose Nanocrystal Isolation from Hardwood Pulp using Various Hydrolysis Conditions.
    Lin KH; Enomae T; Chang FC
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31623140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocrystalline cellulose derived from spruce wood: Influence of process parameters.
    Kumar P; Miller K; Kermanshahi-Pour A; Brar SK; Beims RF; Xu CC
    Int J Biol Macromol; 2022 Nov; 221():426-434. PubMed ID: 36084872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.
    Shaheen TI; Emam HE
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1599-1606. PubMed ID: 28988844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of cellulose nanocrystals from pueraria root residue.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li S; Ma Y; Liu M; Luo S
    Int J Biol Macromol; 2019 May; 129():1081-1089. PubMed ID: 30009914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H
    Wang H; Xie H; Du H; Wang X; Liu W; Duan Y; Zhang X; Sun L; Zhang X; Si C
    Carbohydr Polym; 2020 Jul; 239():116233. PubMed ID: 32414449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the action of endoglucanases on bleached eucalyptus kraft pulp as potential catalyst for isolation of cellulose nanocrystals.
    Siqueira GA; Dias IKR; Arantes V
    Int J Biol Macromol; 2019 Jul; 133():1249-1259. PubMed ID: 31047930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis.
    Vanderfleet OM; Osorio DA; Cranston ED
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Holocellulose nanocrystals: amphiphilicity, oil/water emulsion, and self-assembly.
    Jiang F; Hsieh YL
    Biomacromolecules; 2015 Apr; 16(4):1433-41. PubMed ID: 25774901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production.
    Sirviö JA; Visanko M; Liimatainen H
    Biomacromolecules; 2016 Sep; 17(9):3025-32. PubMed ID: 27478001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties.
    Wossine SE; Thothadri G; Tufa HB; Tucho WM; Murtaza A; Edacherian A; Sayeed Ahmed GM
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Eucalyptus Species on the Structural and Thermal Performance of Cellulose Nanocrystals (CNCs) Isolated by Acid Hydrolysis.
    Gil-Castell O; Reyes-Contreras P; Barra PA; Teixeira Mendonça R; Carrillo-Varela I; Badia JD; Serra A; Ribes-Greus A
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production and Characterization of Cellulose Nanocrystals from Eucalyptus Dissolving Pulp Using Endoglucanases from
    Waghmare P; Xu N; Waghmare P; Liu G; Qu Y; Li X; Zhao J
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.