These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 28433188)
1. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
2. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Kim SK; Jin YS; Choi IG; Park YC; Seo JH Metab Eng; 2015 May; 29():46-55. PubMed ID: 25724339 [TBL] [Abstract][Full Text] [Related]
3. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Kim SK; Jo JH; Jin YS; Seo JH Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688 [TBL] [Abstract][Full Text] [Related]
5. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
6. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899 [TBL] [Abstract][Full Text] [Related]
7. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
10. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
11. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
12. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971 [TBL] [Abstract][Full Text] [Related]
13. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
14. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337 [TBL] [Abstract][Full Text] [Related]
15. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. Chen Y; Wu Y; Zhu B; Zhang G; Wei N PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003 [TBL] [Abstract][Full Text] [Related]
16. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
17. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Kim SR; Park YC; Jin YS; Seo JH Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Guo W; Sheng J; Zhao H; Feng X Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023 [TBL] [Abstract][Full Text] [Related]
19. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
20. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]