BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 28433512)

  • 1. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis.
    Stroppa PHF; Antinarelli LMR; Carmo AML; Gameiro J; Coimbra ES; da Silva AD
    Bioorg Med Chem; 2017 Jun; 25(12):3034-3045. PubMed ID: 28433512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis.
    Meinel RS; Almeida ADC; Stroppa PHF; Glanzmann N; Coimbra ES; da Silva AD
    Chem Biol Interact; 2020 Jan; 315():108850. PubMed ID: 31634447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp.
    Calixto SL; Glanzmann N; Xavier Silveira MM; da Trindade Granato J; Gorza Scopel KK; Torres de Aguiar T; DaMatta RA; Macedo GC; da Silva AD; Coimbra ES
    Chem Biol Interact; 2018 Sep; 293():141-151. PubMed ID: 30098941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semicarbazone derivatives as promising therapeutic alternatives in leishmaniasis.
    Cavalcanti de Queiroz A; Alves MA; Barreiro EJ; Lima LM; Alexandre-Moreira MS
    Exp Parasitol; 2019 Jun; 201():57-66. PubMed ID: 31004571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.
    Glanzmann N; Antinarelli LMR; da Costa Nunes IK; Pereira HMG; Coelho EAF; Coimbra ES; da Silva AD
    Biomed Pharmacother; 2021 Sep; 141():111857. PubMed ID: 34323702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-Aminoquinoline Derivatives as Potential Antileishmanial Agents.
    Antinarelli LM; Dias RM; Souza IO; Lima WP; Gameiro J; da Silva AD; Coimbra ES
    Chem Biol Drug Des; 2015 Oct; 86(4):704-14. PubMed ID: 25682728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species.
    Tavares GSV; Mendonça DVC; Lage DP; Granato JDT; Ottoni FM; Ludolf F; Chávez-Fumagalli MA; Duarte MC; Tavares CAP; Alves RJ; Coimbra ES; Coelho EAF
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):236-246. PubMed ID: 29481714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species.
    Nieto-Meneses R; Castillo R; Hernández-Campos A; Maldonado-Rangel A; Matius-Ruiz JB; Trejo-Soto PJ; Nogueda-Torres B; Dea-Ayuela MA; Bolás-Fernández F; Méndez-Cuesta C; Yépez-Mulia L
    Exp Parasitol; 2018 Jan; 184():82-89. PubMed ID: 29191699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis.
    Soyer TG; Mendonça DVC; Tavares GSV; Lage DP; Dias DS; Ribeiro PAF; Perin L; Ludolf F; Coelho VTS; Ferreira ACG; Neves PHAS; Matos GF; Chávez-Fumagalli MA; Coimbra ES; Pereira GR; Coelho EAF; Antinarelli LMR
    Exp Parasitol; 2019 Apr; 199():30-37. PubMed ID: 30817917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis.
    Godinho JL; Georgikopoulou K; Calogeropoulou T; de Souza W; Rodrigues JC
    Exp Parasitol; 2013 Sep; 135(1):153-65. PubMed ID: 23845259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes.
    Marinho Fde A; Gonçalves KC; Oliveira SS; Oliveira AC; Bellio M; d'Avila-Levy CM; Santos AL; Branquinha MH
    Mem Inst Oswaldo Cruz; 2011 Jun; 106(4):507-9. PubMed ID: 21739043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum.
    Da Silva BJM; Souza-Monteiro JR; Rogez H; Crespo-López ME; Do Nascimento JLM; Silva EO
    Biomed Pharmacother; 2018 Jan; 97():1613-1621. PubMed ID: 29793323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solidagenone acts on promastigotes of L. amazonensis by inducing apoptosis-like processes on intracellular amastigotes by IL-12p70/ROS/NO pathway activation.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Contato VM; Silva TF; de Matos RLN; Detoni MB; Rodrigues ACJ; Carloto AC; Lazarin DB; Arakawa NS; Costa IN; Conchon-Costa I; Miranda-Sapla MM; Wowk PF; Pavanelli WR
    Phytomedicine; 2021 May; 85():153536. PubMed ID: 33765552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo antileishmanial efficacy of miltefosine against Leishmania (Leishmania) amazonensis.
    García Bustos MF; Barrio A; Prieto GG; de Raspi EM; Cimino RO; Cardozo RM; Parada LA; Yeo M; Soto J; Uncos DA; Parodi C; Basombrío MA
    J Parasitol; 2014 Dec; 100(6):840-7. PubMed ID: 25014108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-Quinolinylhydrazone analogues kill Leishmania (Leishmania) amazonensis by inducing apoptosis and mitochondria-dependent pathway cell death.
    Granato JDT; Silva ETD; Lemos ASO; Machado PA; Midlej VDV; Antinarelli LMR; Silva Neto AFD; Souza MVN; Coimbra ES
    Chem Biol Drug Des; 2024 May; 103(5):e14535. PubMed ID: 38772877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C5 induces different cell death pathways in promastigotes of Leishmania amazonensis.
    Mendes EA; Desoti VC; Silva Sde O; Ueda-Nakamura T; Dias Filho BP; Yamada-Ogatta SF; Sarragiotto MH; Nakamura CV
    Chem Biol Interact; 2016 Aug; 256():16-24. PubMed ID: 27317947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; de Carvalho PGC; Cardoso ILA; Simão ANC; Arakawa NS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2018 Jul; 46():11-20. PubMed ID: 30097110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antileishmanial compounds from Connarus suberosus: Metabolomics, isolation and mechanism of action.
    Morais LS; Dusi RG; Demarque DP; Silva RL; Albernaz LC; Báo SN; Merten C; Antinarelli LMR; Coimbra ES; Espindola LS
    PLoS One; 2020; 15(11):e0241855. PubMed ID: 33156835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eugenia piauhiensis Vellaff. essential oil and γ-elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation.
    Nunes TAL; Costa LH; De Sousa JMS; De Souza VMR; Rodrigues RRL; Val MDCA; Pereira ACTDC; Ferreira GP; Da Silva MV; Da Costa JMAR; Véras LMC; Diniz RC; Rodrigues KADF
    Chem Biol Interact; 2021 Apr; 339():109429. PubMed ID: 33713644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct Leishmania species by multitarget action in the parasites.
    Antinarelli LMR; Meinel RS; Coelho EAF; da Silva AD; Coimbra ES
    J Pharm Pharmacol; 2019 Dec; 71(12):1854-1863. PubMed ID: 31595530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.