BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28433644)

  • 21. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive.
    Castro-Moure F; Goshgarian HG
    Exp Neurol; 1997 Oct; 147(2):299-310. PubMed ID: 9344555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats.
    Bezdudnaya T; Hormigo KM; Marchenko V; Lane MA
    Exp Neurol; 2018 Jul; 305():56-65. PubMed ID: 29596845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
    Mercier LM; Gonzalez-Rothi EJ; Streeter KA; Posgai SS; Poirier AS; Fuller DD; Reier PJ; Baekey DM
    J Neurophysiol; 2017 Feb; 117(2):767-776. PubMed ID: 27881723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the axon pathways which mediate functional recovery of a paralyzed hemidiaphragm following spinal cord hemisection in the adult rat.
    Moreno DE; Yu XJ; Goshgarian HG
    Exp Neurol; 1992 Jun; 116(3):219-28. PubMed ID: 1375167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term reorganization of respiratory pathways after partial cervical spinal cord injury.
    Vinit S; Darlot F; Stamegna JC; Sanchez P; Gauthier P; Kastner A
    Eur J Neurosci; 2008 Feb; 27(4):897-908. PubMed ID: 18279359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury.
    Lee KZ; Sandhu MS; Dougherty BJ; Reier PJ; Fuller DD
    Exp Neurol; 2015 Jan; 263():314-24. PubMed ID: 25448009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spinal cord injury in neonates alters respiratory motor output via supraspinal mechanisms.
    Zimmer MB; Goshgarian HG
    Exp Neurol; 2007 Jul; 206(1):137-45. PubMed ID: 17559837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the neural pathway underlying spontaneous crossed phrenic activity in neonatal rats.
    Huang Y; Goshgarian HG
    Neuroscience; 2009 Nov; 163(4):1109-18. PubMed ID: 19596054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M; Ghosh B; Urban MW; Sahu M; Mercogliano C; Charsar BA; Komaravolu S; Block CG; Smith GM; Wright MC; Lepore AC
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury.
    Vinit S; Kastner A
    Respir Physiol Neurobiol; 2009 Nov; 169(2):115-22. PubMed ID: 19682608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury.
    Goshgarian HG
    J Appl Physiol (1985); 2003 Feb; 94(2):795-810. PubMed ID: 12531916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury.
    Dougherty BJ; Gonzalez-Rothi EJ; Lee KZ; Ross HH; Reier PJ; Fuller DD
    Exp Neurol; 2016 Apr; 278():22-6. PubMed ID: 26808660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion.
    Nicaise C; Frank DM; Hala TJ; Authelet M; Pochet R; Adriaens D; Brion JP; Wright MC; Lepore AC
    J Neurotrauma; 2013 Jun; 30(12):1092-9. PubMed ID: 23534670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous crossed phrenic activity in the neonatal respiratory network.
    Zimmer MB; Goshgarian HG
    Exp Neurol; 2005 Aug; 194(2):530-40. PubMed ID: 16022876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury.
    Gonzalez-Rothi EJ; Allen LL; Seven YB; Ciesla MC; Holland AE; Santiago JV; Mitchell GS
    Exp Neurol; 2024 Aug; 378():114808. PubMed ID: 38750949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.
    Nantwi KD; Basura GJ; Goshgarian HG
    J Spinal Cord Med; 2003; 26(4):364-71. PubMed ID: 14992338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breathing patterns after mid-cervical spinal contusion in rats.
    Golder FJ; Fuller DD; Lovett-Barr MR; Vinit S; Resnick DK; Mitchell GS
    Exp Neurol; 2011 Sep; 231(1):97-103. PubMed ID: 21683697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonergic innervation of respiratory motor nuclei after cervical spinal injury: Impact of intermittent hypoxia.
    Ciesla MC; Seven YB; Allen LL; Smith KN; Asa ZA; Simon AK; Holland AE; Santiago JV; Stefan K; Ross A; Gonzalez-Rothi EJ; Mitchell GS
    Exp Neurol; 2021 Apr; 338():113609. PubMed ID: 33460645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.