BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28433644)

  • 41. Diaphragmatic recovery in rats with cervical spinal cord injury induced by a theophylline nanoconjugate: Challenges for clinical use.
    Liu F; Zhang Y; Schafer J; Mao G; Goshgarian HG
    J Spinal Cord Med; 2019 Nov; 42(6):725-734. PubMed ID: 30843479
    [No Abstract]   [Full Text] [Related]  

  • 42. Intraspinal transplantation and modulation of donor neuron electrophysiological activity.
    Lee KZ; Lane MA; Dougherty BJ; Mercier LM; Sandhu MS; Sanchez JC; Reier PJ; Fuller DD
    Exp Neurol; 2014 Jan; 251():47-57. PubMed ID: 24192152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury.
    Michel-Flutot P; Mansart A; Deramaudt TB; Jesus I; Lee KZ; Bonay M; Vinit S
    Respir Physiol Neurobiol; 2021 Feb; 284():103568. PubMed ID: 33144274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat.
    Lee KZ; Huang YJ; Tsai IL
    J Appl Physiol (1985); 2014 Feb; 116(4):395-405. PubMed ID: 24285148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury.
    Alilain WJ; Goshgarian HG
    Exp Neurol; 2008 Aug; 212(2):348-57. PubMed ID: 18534577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury.
    Fuller DD; Johnson SM; Olson EB; Mitchell GS
    J Neurosci; 2003 Apr; 23(7):2993-3000. PubMed ID: 12684486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phrenic motor neuron survival below cervical spinal cord hemisection.
    Allen LL; Nichols NL; Asa ZA; Emery AT; Ciesla MC; Santiago JV; Holland AE; Mitchell GS; Gonzalez-Rothi EJ
    Exp Neurol; 2021 Dec; 346():113832. PubMed ID: 34363808
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spinal connections of ventral-group bulbospinal inspiratory neurons studied with cross-correlation in the decerebrate rat.
    Tian GF; Duffin J
    Exp Brain Res; 1996 Sep; 111(2):178-86. PubMed ID: 8891649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacological disinhibition enhances paced breathing following complete spinal cord injury in rats.
    Bezdudnaya T; Lane MA; Marchenko V
    Respir Physiol Neurobiol; 2020 Nov; 282():103514. PubMed ID: 32750492
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compensatory Function of the Diaphragm after High Cervical Hemisection in the Rat.
    Lee KZ; Hsu SH
    J Neurotrauma; 2017 Sep; 34(18):2634-2644. PubMed ID: 28447895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The pattern and extent of retrograde transsynaptic transport of WGA-Alexa 488 in the phrenic motor system is dependent upon the site of application.
    Goshgarian HG; Buttry JL
    J Neurosci Methods; 2014 Jan; 222():156-64. PubMed ID: 24239778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ampakines Stimulate Diaphragm Activity after Spinal Cord Injury.
    Rana S; Sunshine MD; Greer JJ; Fuller DD
    J Neurotrauma; 2021 Dec; 38(24):3467-3482. PubMed ID: 34806433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    Exp Neurol; 2013 Sep; 247():101-9. PubMed ID: 23583688
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dorsal and ventral respiratory groups of neurons in the medulla of the rat.
    Saether K; Hilaire G; Monteau R
    Brain Res; 1987 Sep; 419(1-2):87-96. PubMed ID: 3676744
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury.
    Urban MW; Ghosh B; Block CG; Strojny LR; Charsar BA; Goulão M; Komaravolu SS; Smith GM; Wright MC; Li S; Lepore AC
    eNeuro; 2019; 6(5):. PubMed ID: 31427403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury.
    Golder FJ; Mitchell GS
    J Neurosci; 2005 Mar; 25(11):2925-32. PubMed ID: 15772352
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered respiratory motor drive after spinal cord injury: supraspinal and bilateral effects of a unilateral lesion.
    Golder FJ; Reier PJ; Bolser DC
    J Neurosci; 2001 Nov; 21(21):8680-9. PubMed ID: 11606656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury.
    Sandhu MS; Ross HH; Lee KZ; Ormerod BK; Reier PJ; Fuller DD
    Exp Neurol; 2017 Jan; 287(Pt 2):205-215. PubMed ID: 27302679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat.
    Tian GF; Peever JH; Duffin J
    Exp Brain Res; 1998 Sep; 122(2):149-56. PubMed ID: 9776513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury.
    Nicaise C; Hala TJ; Frank DM; Parker JL; Authelet M; Leroy K; Brion JP; Wright MC; Lepore AC
    Exp Neurol; 2012 Jun; 235(2):539-52. PubMed ID: 22465264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.