BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28433723)

  • 1. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
    Jang YJ; Seo SO; Kim SA; Li L; Kim TJ; Kim SC; Jin YS; Han NS
    J Biotechnol; 2017 Jun; 251():151-155. PubMed ID: 28433723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700.
    Jang YJ; Kim SA; Seo SO; Li L; Han NS
    Lett Appl Microbiol; 2019 May; 68(5):430-436. PubMed ID: 30663071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi.
    Eom HJ; Moon JS; Cho SK; Kim JH; Han NS
    Plasmid; 2012 Jan; 67(1):35-43. PubMed ID: 22133745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequence of Leuconostoc citreum EFEL2700, a host strain for transformation of pCB vectors.
    Kim SA; Jang YJ; Heo JE; Li L; Moon JS; Han NS
    J Biotechnol; 2018 Dec; 287():52-58. PubMed ID: 30142412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of CRISPR Interference (CRISPRi) Platform for Metabolic Engineering of
    Son J; Jang SH; Cha JW; Jeong KJ
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764465
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of a replicon from pCC3, a cryptic plasmid from Leuconostoc citreum C4 derived from kimchi, and development of a new host-vector system.
    Chang JY; Chang HC
    Biotechnol Lett; 2009 May; 31(5):685-96. PubMed ID: 19142587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum.
    Son YJ; Ryu AJ; Li L; Han NS; Jeong KJ
    Microb Cell Fact; 2016 Jan; 15():12. PubMed ID: 26767787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pIH01, a small cryptic plasmid from Leuconostoc citreum IH3.
    Park J; Lee M; Jung J; Kim J
    Plasmid; 2005 Sep; 54(2):184-9. PubMed ID: 15904957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing.
    Lauritsen I; Porse A; Sommer MOA; Nørholm MHH
    Microb Cell Fact; 2017 Aug; 16(1):135. PubMed ID: 28764701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene.
    Cho SK; Lee SJ; Shin SY; Moon JS; Li L; Joo W; Kang DK; Han NS
    J Microbiol Biotechnol; 2015 Dec; 25(12):2100-5. PubMed ID: 26282688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a novel Escherichia coli-leuconostoc shuttle vector for metabolic engineering of Leuconostoc citreum to overproduce D-lactate.
    Chae HS; Lee SH; Lee JH; Park SJ; Lee PC
    Appl Environ Microbiol; 2013 Mar; 79(5):1428-35. PubMed ID: 23241984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of an exopolysaccharide-producing Leuconostoc citreum strain from artisanal cheese.
    Domingos-Lopes MFP; Lamosa P; Stanton C; Ross RP; Silva CCG
    Lett Appl Microbiol; 2018 Dec; 67(6):570-578. PubMed ID: 30218539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.
    Cao QH; Shao HH; Qiu H; Li T; Zhang YZ; Tan XM
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):453-459. PubMed ID: 27900888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit.
    Tang Q; Lou C; Liu SJ
    J Biol Eng; 2017; 11():32. PubMed ID: 28878819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete genome sequence of Leuconostoc citreum KM20.
    Kim JF; Jeong H; Lee JS; Choi SH; Ha M; Hur CG; Kim JS; Lee S; Park HS; Park YH; Oh TK
    J Bacteriol; 2008 Apr; 190(8):3093-4. PubMed ID: 18281406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.