These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 28433737)
1. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Islam MA; Hadadi N; Ataman M; Hatzimanikatis V; Stephanopoulos G Metab Eng; 2017 May; 41():173-181. PubMed ID: 28433737 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene. Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870 [TBL] [Abstract][Full Text] [Related]
3. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation. Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586 [TBL] [Abstract][Full Text] [Related]
4. Bacterial Anaerobic Synthesis Gas (Syngas) and CO Bengelsdorf FR; Beck MH; Erz C; Hoffmeister S; Karl MM; Riegler P; Wirth S; Poehlein A; Weuster-Botz D; Dürre P Adv Appl Microbiol; 2018; 103():143-221. PubMed ID: 29914657 [TBL] [Abstract][Full Text] [Related]
5. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. Ueki T; Nevin KP; Woodard TL; Lovley DR mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453 [TBL] [Abstract][Full Text] [Related]
6. Design, Analysis, and Implementation of a Novel Biochemical Pathway for Ethylene Glycol Production in Bourgade B; Humphreys CM; Millard J; Minton NP; Islam MA ACS Synth Biol; 2022 May; 11(5):1790-1800. PubMed ID: 35543716 [TBL] [Abstract][Full Text] [Related]
7. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related]
8. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation. Chen J; Henson MA Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium. Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551 [TBL] [Abstract][Full Text] [Related]
10. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. Bourgade B; Minton NP; Islam MA FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 33595667 [TBL] [Abstract][Full Text] [Related]
11. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment. Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793 [No Abstract] [Full Text] [Related]
12. Production of chemicals from C1 gases (CO, CO Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118 [TBL] [Abstract][Full Text] [Related]
13. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Wagner N; Wen L; Frazão CJR; Walther T Biotechnol Adv; 2023 Dec; 69():108276. PubMed ID: 37918546 [TBL] [Abstract][Full Text] [Related]
14. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). de Souza Pinto Lemgruber R; Valgepea K; Tappel R; Behrendorff JB; Palfreyman RW; Plan M; Hodson MP; Simpson SD; Nielsen LK; Köpke M; Marcellin E Metab Eng; 2019 May; 53():14-23. PubMed ID: 30641139 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon. Woo JE; Jang YS Appl Microbiol Biotechnol; 2019 Oct; 103(20):8283-8292. PubMed ID: 31396679 [TBL] [Abstract][Full Text] [Related]
16. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Pereira B; Zhang H; De Mey M; Lim CG; Li ZJ; Stephanopoulos G Biotechnol Bioeng; 2016 Feb; 113(2):376-83. PubMed ID: 26221864 [TBL] [Abstract][Full Text] [Related]
17. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica. Kimura Z; Kita A; Iwasaki Y; Nakashimada Y; Hoshino T; Murakami K J Biosci Bioeng; 2016 Mar; 121(3):268-73. PubMed ID: 26452417 [TBL] [Abstract][Full Text] [Related]
18. 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Köpke M; Mihalcea C; Liew F; Tizard JH; Ali MS; Conolly JJ; Al-Sinawi B; Simpson SD Appl Environ Microbiol; 2011 Aug; 77(15):5467-75. PubMed ID: 21685168 [TBL] [Abstract][Full Text] [Related]
19. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Valgepea K; Loi KQ; Behrendorff JB; Lemgruber RSP; Plan M; Hodson MP; Köpke M; Nielsen LK; Marcellin E Metab Eng; 2017 May; 41():202-211. PubMed ID: 28442386 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. Böer T; Engelhardt L; Lüschen A; Eysell L; Yoshida H; Schneider D; Angenent LT; Basen M; Daniel R; Poehlein A FEMS Microbiol Ecol; 2024 Aug; 100(9):. PubMed ID: 39118367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]