BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28433745)

  • 1. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice.
    Zhou Y; Huang X; Zhao T; Qiao M; Zhao X; Zhao M; Xu L; Zhao Y; Wu L; Wu K; Chen R; Fan M; Zhu L
    Brain Behav Immun; 2017 Aug; 64():266-275. PubMed ID: 28433745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic pro-inflammatory response facilitates the development of cerebral edema during short hypoxia.
    Song TT; Bi YH; Gao YQ; Huang R; Hao K; Xu G; Tang JW; Ma ZQ; Kong FP; Coote JH; Chen XQ; Du JZ
    J Neuroinflammation; 2016 Mar; 13(1):63. PubMed ID: 26968975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for establishing the high-altitude cerebral edema (HACE) model by acute hypobaric hypoxia in adult mice.
    Huang X; Zhou Y; Zhao T; Han X; Qiao M; Ding X; Li D; Wu L; Wu K; Zhu LL; Fan M
    J Neurosci Methods; 2015 Apr; 245():178-81. PubMed ID: 25701686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioactive gypenoside (GP-14) alleviates neuroinflammation and blood brain barrier (BBB) disruption by inhibiting the NF-κB signaling pathway in a mouse high-altitude cerebral edema (HACE) model.
    Geng Y; Yang J; Cheng X; Han Y; Yan F; Wang C; Jiang X; Meng X; Fan M; Zhao M; Zhu L
    Int Immunopharmacol; 2022 Jun; 107():108675. PubMed ID: 35299003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NRF1-mediated microglial activation triggers high-altitude cerebral edema.
    Wang X; Chen G; Wan B; Dong Z; Xue Y; Luo Q; Wang D; Lu Y; Zhu L
    J Mol Cell Biol; 2022 Sep; 14(5):. PubMed ID: 35704676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway.
    Gong G; Yin L; Yuan L; Sui D; Sun Y; Fu H; Chen L; Wang X
    Mol Immunol; 2018 Mar; 95():91-98. PubMed ID: 29428576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuation.
    Jing L; Wu N; He L; Shao J; Ma H
    Brain Res Bull; 2020 Dec; 165():253-262. PubMed ID: 33141074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (-)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling.
    Chen G; Cheng K; Niu Y; Zhu L; Wang X
    Arch Biochem Biophys; 2022 Oct; 729():109393. PubMed ID: 36084697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Establishment and Evaluation of a Mice Model of High-Altitude Cerebral Edema].
    Chunhua ; Baimakangzhuo
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Nov; 54(6):1269-1275. PubMed ID: 38162056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profile of cytokines and chemokines in a mouse high-altitude cerebral edema model.
    Shi Z; Jiang X; Geng Y; Yue X; Gao J; Cheng X; Zhao M; Zhu L
    Int J Immunopathol Pharmacol; 2023; 37():3946320231177189. PubMed ID: 37188519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin.
    Wang C; Yan M; Jiang H; Wang Q; He S; Chen J; Wang C
    Life Sci; 2018 Jan; 193():270-281. PubMed ID: 29054452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylethanoid glycosides of Phlomis younghusbandii Mukerjee ameliorate acute hypobaric hypoxia-induced brain impairment in rats.
    Luan F; Li M; Han K; Ma Q; Wang J; Qiu Y; Yu L; He X; Liu D; Lv H
    Mol Immunol; 2019 Apr; 108():81-88. PubMed ID: 30784766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema.
    Xue Y; Wang X; Wan B; Wang D; Li M; Cheng K; Luo Q; Wang D; Lu Y; Zhu L
    Cell Commun Signal; 2022 Oct; 20(1):160. PubMed ID: 36253854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude cerebral edema (HACE): the Denver/Front Range experience.
    Yarnell PR; Heit J; Hackett PH
    Semin Neurol; 2000; 20(2):209-17. PubMed ID: 10946741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness.
    Hackett PH
    Wilderness Environ Med; 1999; 10(2):97-109. PubMed ID: 10442158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of 5,6,7,8-Tetrahydroxyflavone on high altitude cerebral edema in rats.
    Jing L; Wu N; Zhang J; Da Q; Ma H
    Eur J Pharmacol; 2022 Aug; 928():175121. PubMed ID: 35777443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NB-3 expression in endothelial cells contributes to the maintenance of blood brain barrier integrity in a mouse high-altitude cerebral edema model.
    Zhou Y; Yan F; Han X; Huang X; Cheng X; Geng Y; Jiang X; Han Y; Zhao M; Zhu L
    Exp Neurol; 2022 Aug; 354():114116. PubMed ID: 35584741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible Role of Glymphatic System of the Brain in the Pathogenesis of High-Altitude Cerebral Edema.
    Simka M; Latacz P; Czaja J
    High Alt Med Biol; 2018 Dec; 19(4):394-397. PubMed ID: 30239222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemosiderin deposition in the brain as footprint of high-altitude cerebral edema.
    Schommer K; Kallenberg K; Lutz K; Bärtsch P; Knauth M
    Neurology; 2013 Nov; 81(20):1776-9. PubMed ID: 24107867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High altitude cerebral edema and acute mountain sickness. A pathophysiology update.
    Hackett PH
    Adv Exp Med Biol; 1999; 474():23-45. PubMed ID: 10634991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.