BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28433751)

  • 1. Elevated chaperone proteins are a feature of winter freeze avoidance by larvae of the goldenrod gall moth, Epiblema scudderiana.
    Zhang G; Storey JM; Storey KB
    J Insect Physiol; 2018 Apr; 106(Pt 2):106-113. PubMed ID: 28433751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone proteins and winter survival by a freeze tolerant insect.
    Zhang G; Storey JM; Storey KB
    J Insect Physiol; 2011 Aug; 57(8):1115-22. PubMed ID: 21382374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect cold hardiness: the role of mitogen-activated protein kinase and Akt signalling in freeze avoiding larvae of the goldenrod gall moth, Epiblema scudderiana.
    Zhang J; Storey KB
    Insect Mol Biol; 2017 Apr; 26(2):181-189. PubMed ID: 27880024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of protein phosphatases and cAMP-dependent protein kinase in a freeze-avoiding insect, Epiblema scudderiana.
    Pfister TD; Storey KB
    Arch Insect Biochem Physiol; 2006 May; 62(1):43-54. PubMed ID: 16612809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and profiling of miRNAs in the freeze-avoiding gall moth Epiblema scudderiana via next-generation sequencing.
    Lyons PJ; Crapoulet N; Storey KB; Morin P
    Mol Cell Biochem; 2015 Dec; 410(1-2):155-63. PubMed ID: 26328872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: role in glycerol metabolism.
    Holden HA; Storey KB
    Arch Insect Biochem Physiol; 2011 May; 77(1):32-44. PubMed ID: 21400585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In cold-hardy insects, seasonal, temperature, and reversible phosphorylation controls regulate sarco/endoplasmic reticulum Ca2+-ATPase (SERCA).
    McMullen DC; Ramnanan CJ; Storey KB
    Physiol Biochem Zool; 2010; 83(4):677-86. PubMed ID: 20491546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic underpinnings of freeze avoidance in the goldenrod gall moth, Epiblema scudderiana.
    Williamson SM; Ingelson-Filpula WA; Hadj-Moussa H; Storey KB
    J Insect Physiol; 2021 Oct; 134():104298. PubMed ID: 34411584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EsMlp, a muscle-LIM protein gene, is up-regulated during cold exposure in the freeze-avoiding larvae of Epiblema scudderiana.
    Bilgen T; English TE; McMullen DC; Storey KB
    Cryobiology; 2001 Aug; 43(1):11-20. PubMed ID: 11812047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HSP/co-chaperone network in environmental cold adaptation of Chilo suppressalis.
    Jiang F; Chang G; Li Z; Abouzaid M; Du X; Hull JJ; Ma W; Lin Y
    Int J Biol Macromol; 2021 Sep; 187():780-788. PubMed ID: 34358598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMP-activated protein kinase and metabolic regulation in cold-hardy insects.
    Rider MH; Hussain N; Dilworth SM; Storey JM; Storey KB
    J Insect Physiol; 2011 Nov; 57(11):1453-62. PubMed ID: 21787782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In defense of proteins: Chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs.
    Storey JM; Storey KB
    J Exp Zool A Ecol Integr Physiol; 2019 Aug; 331(7):392-402. PubMed ID: 31276323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels.
    McMullen DC; Storey KB
    Insect Biochem Mol Biol; 2008 Mar; 38(3):367-73. PubMed ID: 18252250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana.
    Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K
    J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae.
    Heydari M; Izadi H
    Bull Entomol Res; 2014 Oct; 104(5):592-600. PubMed ID: 24819226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s.
    Easton DP; Kaneko Y; Subjeck JR
    Cell Stress Chaperones; 2000 Oct; 5(4):276-90. PubMed ID: 11048651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.
    Teigen LE; Orczewska JI; McLaughlin J; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():139-47. PubMed ID: 26123780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.
    Krivoruchko A; Storey KB
    J Comp Physiol B; 2010 Mar; 180(3):403-14. PubMed ID: 19834715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal change of cold hardiness in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae).
    Khani A; Moharramipour S
    Pak J Biol Sci; 2007 Aug; 10(15):2591-4. PubMed ID: 19070137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blow fly Calliphora vicina.
    Coleman PC; Bale JS; Hayward SA
    J Exp Biol; 2014 May; 217(Pt 9):1454-61. PubMed ID: 24436389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.