BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28433828)

  • 1. Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water.
    Topuz F; Uyar T
    J Hazard Mater; 2017 Aug; 335():108-116. PubMed ID: 28433828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons.
    Topuz F; Uyar T
    J Colloid Interface Sci; 2017 Jul; 497():233-241. PubMed ID: 28285051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Removal of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Water by Electrospun Nanofibrous Polycyclodextrin Membranes.
    Celebioglu A; Topuz F; Yildiz ZI; Uyar T
    ACS Omega; 2019 Apr; 4(4):7850-7860. PubMed ID: 31459873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Insights Into the Influence of Substitution Groups on the Inclusion Complexation of β-Cyclodextrin.
    Yan X; Wang Y; Meng T; Yan H
    Front Chem; 2021; 9():668400. PubMed ID: 34095084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study.
    Viglianti C; Hanna K; de Brauer C; Germain P
    Environ Pollut; 2006 Apr; 140(3):427-35. PubMed ID: 16188357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-mode separation of polycyclic aromatic hydrocarbons (PAHs) in electrokinetic chromatography.
    Luong JH; Guo Y
    Electrophoresis; 1998 May; 19(5):723-30. PubMed ID: 9629906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of cyclodextrin aggregation and extraction of Anthracene from non-aqueous liquid phase.
    Zhu X; Wu G; Chen D
    J Hazard Mater; 2016 Dec; 320():169-175. PubMed ID: 27544729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of polycyclic aromatic hydrocarbons (PAHs) from water through degradable polycaprolactone electrospun membrane.
    Topuz F
    Turk J Chem; 2022; 46(6):2080-2089. PubMed ID: 37621343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing separation conditions of 19 polycyclic aromatic hydrocarbons by cyclodextrin-modified capillary electrophoresis and applications to edible oils.
    Ferey L; Delaunay N; Rutledge DN; Cordella CB; This H; Huertas A; Raoul Y; Gareil P
    Talanta; 2014 Feb; 119():572-81. PubMed ID: 24401457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction.
    Hu X; Li J; Chen Q; Lin Z; Yin D
    Sci Total Environ; 2014 Sep; 493():12-21. PubMed ID: 24937488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes: sorption kinetics and mechanism.
    Dai Y; Niu J; Yin L; Xu J; Xi Y
    J Hazard Mater; 2011 Sep; 192(3):1409-17. PubMed ID: 21752545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Detection and Removal of Polycyclic Aromatic Hydrocarbons Using Cyclodextrin-Modified Cellulose.
    Racicot JM; Mako TL; Healey A; Hos B; Levine M
    Chempluschem; 2020 Aug; 85(8):1730-1736. PubMed ID: 32790235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels.
    Michel B; Bras J; Dufresne A; Heggset EB; Syverud K
    Molecules; 2020 May; 25(10):. PubMed ID: 32443918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly (vinyl alcohol) and polyurethane foams for removal of cadmium.
    Wang X; Min BG
    J Hazard Mater; 2008 Aug; 156(1-3):381-6. PubMed ID: 18262348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of novel biocompatible cryogels of poly (vinyl alcohol) and egg-albumin and their water sorption study.
    Bajpai AK; Saini R
    J Mater Sci Mater Med; 2006 Jan; 17(1):49-61. PubMed ID: 16389472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic cryogels for DNA adsorption: effect of embedding of monosize microbeads into cryogel network on their adsorptive performances.
    Emin Çorman M; Bereli N; Özkara S; Uzun L; Denizli A
    Biomed Chromatogr; 2013 Nov; 27(11):1524-31. PubMed ID: 23780689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(HEMA-co-NBMI) monolithic cryogel columns for IgG adsorption.
    Uygun M; Şenay RH; Avcıbaşı N; Akgöl S
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1574-84. PubMed ID: 24233543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.
    Ingavle GC; Baillie LW; Zheng Y; Lis EK; Savina IN; Howell CA; Mikhalovsky SV; Sandeman SR
    Biomaterials; 2015 May; 50():140-53. PubMed ID: 25736504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.