These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 28434530)
1. Accelerated cellular senescence as underlying mechanism for functionally impaired bone marrow-derived progenitor cells in ischemic heart disease. Nollet E; Hoymans VY; Rodrigus IR; De Bock D; Dom M; Van Hoof VOM; Vrints CJ; Van Craenenbroeck EM Atherosclerosis; 2017 May; 260():138-146. PubMed ID: 28434530 [TBL] [Abstract][Full Text] [Related]
2. Bone Marrow-Derived Progenitor Cells Are Functionally Impaired in Ischemic Heart Disease. Nollet E; Hoymans VY; Rodrigus IR; De Bock D; Dom M; Vanassche B; Van Hoof VO; Cools N; Van Ackeren K; Wouters K; Vermeulen K; Vrints CJ; Van Craenenbroeck EM J Cardiovasc Transl Res; 2016 Aug; 9(4):266-78. PubMed ID: 27456951 [TBL] [Abstract][Full Text] [Related]
3. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Heeschen C; Lehmann R; Honold J; Assmus B; Aicher A; Walter DH; Martin H; Zeiher AM; Dimmeler S Circulation; 2004 Apr; 109(13):1615-22. PubMed ID: 15037527 [TBL] [Abstract][Full Text] [Related]
4. Relation between the frequency of CD34⁺ bone marrow derived circulating progenitor cells and the number of diseased coronary arteries in patients with myocardial ischemia and diabetes. Bozdag-Turan I; Turan RG; Turan CH; Ludovicy S; Akin I; Kische S; Arsoy NS; Schneider H; Ortak J; Rehders T; Hermann T; Paranskaya L; Kohlschein P; Bastian M; Ulus AT; Sahin K; Ince H; Nienaber CA Cardiovasc Diabetol; 2011 Nov; 10():107. PubMed ID: 22118372 [TBL] [Abstract][Full Text] [Related]
5. Improved functional activity of bone marrow derived circulating progenitor cells after intra coronary freshly isolated bone marrow cells transplantation in patients with ischemic heart disease. Turan RG; Bozdag-T I; Ortak J; Kische S; Akin I; Schneider H; Turan CH; Rehders TC; Rauchhaus M; Kleinfeldt T; Belu C; Brehm M; Yokus S; Steiner S; Sahin K; Nienaber CA; Ince H Stem Cell Rev Rep; 2011 Sep; 7(3):646-56. PubMed ID: 21188654 [TBL] [Abstract][Full Text] [Related]
6. Impaired mobilization of CD133(+) bone marrow-derived circulating progenitor cells with an increased number of diseased coronary arteries in ischemic heart disease patients with diabetes. Turan RG; Turan CH; Bozdag-Turan I; Ortak J; Akin I; Kische S; Schneider H; Kleinfeldt T; Rehders TC; Rauchhaus M; Adolph E; Amen S; Hermann T; Yokus S; Brehm M; Steiner S; Sahin K; Nienaber CA; Ince H Circ J; 2011; 75(11):2635-41. PubMed ID: 21828932 [TBL] [Abstract][Full Text] [Related]
7. Improved mobilization of the CD34(+) and CD133(+) bone marrow-derived circulating progenitor cells by freshly isolated intracoronary bone marrow cell transplantation in patients with ischemic heart disease. Turan RG; Bozdag-Turan I; Ortak J; Akin I; Kische S; Schneider H; Turan CH; Rehders TC; Rauchhaus M; Kleinfeldt T; Adolph E; Brehm M; Yokus S; Steiner S; Sahin K; Nienaber CA; Ince H Stem Cells Dev; 2011 Sep; 20(9):1491-501. PubMed ID: 21190450 [TBL] [Abstract][Full Text] [Related]
8. Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita. Beier F; Foronda M; Martinez P; Blasco MA Blood; 2012 Oct; 120(15):2990-3000. PubMed ID: 22932806 [TBL] [Abstract][Full Text] [Related]
9. Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: roles of Ras and oxidative stress. Ho JH; Chen YF; Ma WH; Tseng TC; Chen MH; Lee OK Cell Transplant; 2011; 20(8):1209-20. PubMed ID: 21176396 [TBL] [Abstract][Full Text] [Related]
10. Correlation between the functional impairment of bone marrow-derived circulating progenitor cells and the extend of coronary artery disease. Bozdag-Turan I; Turan RG; Paranskaya L; Arsoy NS; Turan CH; Akin I; Kische S; Ortak J; Schneider H; Ludovicy S; Hermann T; D'Ancona G; Durdu S; Akar AR; Ince H; Nienaber CA J Transl Med; 2012 Jul; 10():143. PubMed ID: 22776510 [TBL] [Abstract][Full Text] [Related]
11. Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Tamarat R; Silvestre JS; Le Ricousse-Roussanne S; Barateau V; Lecomte-Raclet L; Clergue M; Duriez M; Tobelem G; Lévy BI Am J Pathol; 2004 Feb; 164(2):457-66. PubMed ID: 14742252 [TBL] [Abstract][Full Text] [Related]
12. [Autologous bone marrow mononuclear cells and peripheral endothelial progenitor cells differentiation in myocardial ischemia reperfusion injury region in swine]. Li CJ; Gao RL; Yang YJ; Song LF; Ruan YM; Hu FH; Yang WX; Chen JL; Qiao SB; Qin XW; Liu YQ; Chen ZJ Zhonghua Xin Xue Guan Bing Za Zhi; 2007 Apr; 35(4):350-3. PubMed ID: 17711663 [TBL] [Abstract][Full Text] [Related]
13. Bone marrow-derived myocyte-like cells and regulation of repair-related cytokines after bone marrow cell transplantation. Misao Y; Takemura G; Arai M; Sato S; Suzuki K; Miyata S; Kosai K; Minatoguchi S; Fujiwara T; Fujiwara H Cardiovasc Res; 2006 Feb; 69(2):476-90. PubMed ID: 16368087 [TBL] [Abstract][Full Text] [Related]
14. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. Hariharan N; Quijada P; Mohsin S; Joyo A; Samse K; Monsanto M; De La Torre A; Avitabile D; Ormachea L; McGregor MJ; Tsai EJ; Sussman MA J Am Coll Cardiol; 2015 Jan; 65(2):133-47. PubMed ID: 25593054 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of improvement of left ventricle remodeling by trans-planting two kinds of autologous bone marrow stem cells in pigs. Li SR; Qi XY; Hu FL; Zhang JQ; Wang TH; Dang Y; Meng CL; Liu HL; Li YX; Wu D; Dong J; Xun LY; Gao LH; Jin FC Chin Med J (Engl); 2008 Dec; 121(23):2403-9. PubMed ID: 19102957 [TBL] [Abstract][Full Text] [Related]
16. Elevated senescence in the bone marrow mesenchymal stem cells of acquired aplastic anemia patients: A possible implication of DNA damage responses and telomere attrition. Saxena P; Srivastava J; Rai B; Tripathy NK; Raza S; Sinha RA; Gupta R; Yadav S; Nityanand S; Chaturvedi CP Biochim Biophys Acta Mol Basis Dis; 2024 Mar; 1870(3):167025. PubMed ID: 38237741 [TBL] [Abstract][Full Text] [Related]
17. Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. Wolfien M; Klatt D; Salybekov AA; Ii M; Komatsu-Horii M; Gaebel R; Philippou-Massier J; Schrinner E; Akimaru H; Akimaru E; David R; Garbade J; Gummert J; Haverich A; Hennig H; Iwasaki H; Kaminski A; Kawamoto A; Klopsch C; Kowallick JT; Krebs S; Nesteruk J; Reichenspurner H; Ritter C; Stamm C; Tani-Yokoyama A; Blum H; Wolkenhauer O; Schambach A; Asahara T; Steinhoff G EBioMedicine; 2020 Jul; 57():102862. PubMed ID: 32629392 [TBL] [Abstract][Full Text] [Related]
18. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells. Liu N; Qi X; Han Z; Liang L; Kong D; Han Z; Zhao S; He ZX; Li Z Sci Rep; 2016 Jun; 6():28739. PubMed ID: 27345618 [TBL] [Abstract][Full Text] [Related]
19. Identification of Bone Marrow Cell Subpopulations Associated With Improved Functional Outcomes in Patients With Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial. Taylor DA; Perin EC; Willerson JT; Zierold C; Resende M; Carlson M; Nestor B; Wise E; Orozco A; Pepine CJ; Henry TD; Ellis SG; Zhao DX; Traverse JH; Cooke JP; Schutt RC; Bhatnagar A; Grant MB; Lai D; Johnstone BH; Sayre SL; Moyé L; Ebert RF; Bolli R; Simari RD; Cogle CR; Cell Transplant; 2016; 25(9):1675-1687. PubMed ID: 26590374 [TBL] [Abstract][Full Text] [Related]