These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 28434665)
1. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes. Glibert PM Mar Pollut Bull; 2017 Nov; 124(2):591-606. PubMed ID: 28434665 [TBL] [Abstract][Full Text] [Related]
2. Compound eutrophication index: An integrated approach for assessing ecological risk and identifying the critical element controlling harmful algal blooms in coastal seas. Lin G; Li K; Liang S; Li Y; Su Y; Wang X Mar Pollut Bull; 2020 Jan; 150():110585. PubMed ID: 31711683 [TBL] [Abstract][Full Text] [Related]
3. Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Paerl HW; Otten TG; Kudela R Environ Sci Technol; 2018 May; 52(10):5519-5529. PubMed ID: 29656639 [TBL] [Abstract][Full Text] [Related]
4. Effects of Nutrient Limitation on the Synthesis of N-Rich Phytoplankton Toxins: A Meta-Analysis. Brandenburg K; Siebers L; Keuskamp J; Jephcott TG; Van de Waal DB Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32244741 [TBL] [Abstract][Full Text] [Related]
5. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. Huang J; Zhang Y; Arhonditsis GB; Gao J; Chen Q; Peng J Water Res; 2020 Aug; 181():115902. PubMed ID: 32505885 [TBL] [Abstract][Full Text] [Related]
6. Long-term perspective on the relationship between phytoplankton and nutrient concentrations in a southeastern Australian estuary. Larsson ME; Ajani PA; Rubio AM; Guise K; McPherson RG; Brett SJ; Davies KP; Doblin MA Mar Pollut Bull; 2017 Jan; 114(1):227-238. PubMed ID: 27641109 [TBL] [Abstract][Full Text] [Related]
7. Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters. Xiao X; Agustà S; Pan Y; Yu Y; Li K; Wu J; Duarte CM Environ Sci Technol; 2019 Nov; 53(22):13031-13041. PubMed ID: 31609108 [TBL] [Abstract][Full Text] [Related]
9. Analyzing eutrophication and harmful algal bloom dynamics in a deep Mediterranean hypereutrophic reservoir. Abbas M; Dia S; Deutsch ES; Alameddine I Environ Sci Pollut Res Int; 2023 Mar; 30(13):37607-37621. PubMed ID: 36572773 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of algal blooms in Da-Ning River of Three Gorges Reservoir]. Zheng BH; Cao CJ; Zhang JL; Huang MS; Chen ZL Huan Jing Ke Xue; 2009 Nov; 30(11):3218-26. PubMed ID: 20063732 [TBL] [Abstract][Full Text] [Related]
11. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Paerl HW; Gardner WS; Havens KE; Joyner AR; McCarthy MJ; Newell SE; Qin B; Scott JT Harmful Algae; 2016 Apr; 54():213-222. PubMed ID: 28073478 [TBL] [Abstract][Full Text] [Related]
12. Interannual and Decadal Changes in Harmful Algal Blooms in the Coastal Waters of Fujian, China. Zhang C Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136515 [TBL] [Abstract][Full Text] [Related]
13. Bioremediation efficiency of the largest scale artificial Porphyra yezoensis cultivation in the open sea in China. Wu H; Huo Y; Zhang J; Liu Y; Zhao Y; He P Mar Pollut Bull; 2015 Jun; 95(1):289-96. PubMed ID: 25865344 [TBL] [Abstract][Full Text] [Related]
14. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Paerl HW; Fulton RS; Moisander PH; Dyble J ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693 [TBL] [Abstract][Full Text] [Related]
15. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. Ma J; Qin B; Wu P; Zhou J; Niu C; Deng J; Niu H J Environ Sci (China); 2015 Jan; 27():80-6. PubMed ID: 25597665 [TBL] [Abstract][Full Text] [Related]
16. Algal blooms in the middle and lower Han River: Characteristics, early warning and prevention. Xin X; Zhang H; Lei P; Tang W; Yin W; Li J; Zhong H; Li K Sci Total Environ; 2020 Mar; 706():135293. PubMed ID: 31846885 [TBL] [Abstract][Full Text] [Related]
17. Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina. Lewitus AJ; Holland AF Environ Monit Assess; 2003; 81(1-3):361-71. PubMed ID: 12620028 [TBL] [Abstract][Full Text] [Related]
18. Methodology for forecast and control of coastal harmful algal blooms by embedding a compound eutrophication index into the ecological risk index. Lin G; Xu X; Wang P; Liang S; Li Y; Su Y; Li K; Wang X Sci Total Environ; 2020 Sep; 735():139404. PubMed ID: 32473442 [TBL] [Abstract][Full Text] [Related]
19. Microorganisms-based methods for harmful algal blooms control: A review. Sun R; Sun P; Zhang J; Esquivel-Elizondo S; Wu Y Bioresour Technol; 2018 Jan; 248(Pt B):12-20. PubMed ID: 28801171 [TBL] [Abstract][Full Text] [Related]
20. The concentration thresholds establishment of nitrogen and phosphorus considering the effects of extracellular substrate-to-biomass ratio on cyanobacterial growth kinetics. Jiang M; Zhou Y; Cao X; Ji X; Zhang W; Huang W; Zhang J; Zheng Z Sci Total Environ; 2019 Apr; 662():307-312. PubMed ID: 30690365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]