These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2843480)

  • 1. In vitro growth of Chlamydia trachomatis in conjunctival and corneal epithelium.
    Patton DL; Chan KY; Kuo CC; Cosgrove YT; Langley L
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1087-95. PubMed ID: 2843480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-cultivation of conjunctival epithelial cells and Chlamydia trachomatis: electron microscopic findings.
    Kim DS; Ko MK; Kang KT
    Korean J Ophthalmol; 1998 Jun; 12(1):1-5. PubMed ID: 9753944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of chlamydial inclusions in exfoliated cells.
    Møller BR
    Scand J Infect Dis Suppl; 1982; 32():16-20. PubMed ID: 6291142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; Gérard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimentally induced ocular chlamydial infection in infant pig-tailed macaques.
    Cosgrove PA; Patton DL; Kuo CC; Wang SP; Lindquist TD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):995-1003. PubMed ID: 2722453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 9. The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B.
    Stirling P; Richmond S
    J Gen Microbiol; 1977 May; 100(1):31-42. PubMed ID: 195005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of the murine cervix following infection with Chlamydia trachomatis.
    Phillips DM; Burillo CA
    Tissue Cell; 1998 Aug; 30(4):446-52. PubMed ID: 9787477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Chlamydia trachomatis antigen and antiserum: a review.
    Terho P; Matikainen MT
    Scand J Infect Dis Suppl; 1982; 32():30-3. PubMed ID: 6753132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term effects of natural amino acids on infection with Chlamydia trachomatis.
    Gussmann J; Al-Younes HM; Braun PR; Brinkmann V; Meyer TF
    Microb Pathog; 2008 May; 44(5):438-47. PubMed ID: 18222624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental trachoma in subcutaneous conjunctival autografts in macaques.
    Patton DL; Cosgrove PA; Grutzmacher RD; Kuo CC; Wang SP
    Invest Ophthalmol Vis Sci; 1987 Sep; 28(9):1575-82. PubMed ID: 3623841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Identification of latent forms of Chlamydia trachomatis in the conjunctiva signifying "new interpretation of ocular chlamydia infections"].
    Verin P; Mortemousque B; Gendre P; Barac'H D; Dorot N; Chraibi-Hasseini K
    Rev Int Trach Pathol Ocul Trop Subtrop Sante Publique; 1997; 74():65-74. PubMed ID: 9889578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis in routine cervical smears. A microscopic and ultrastructural analysis.
    Henry MR; de Mesy Jensen KL; Skoglund CD; Armstrong DW
    Acta Cytol; 1993; 37(3):343-52. PubMed ID: 8388608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel automated method for enumeration of Chlamydia trachomatis inclusion forming units.
    Wang S; Indrawati L; Wooters M; Caro-Aguilar I; Field J; Kaufhold R; Payne A; Caulfield MJ; Smith JG; Heinrichs JH
    J Immunol Methods; 2007 Jul; 324(1-2):84-91. PubMed ID: 17553519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit conjunctival and corneal epithelial cells belong to two separate lineages.
    Wei ZG; Sun TT; Lavker RM
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):523-33. PubMed ID: 8595952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clonal isolation of chlamydia-infected cells using flow cytometry.
    Alzhanov DT; Suchland RJ; Bakke AC; Stamm WE; Rockey DD
    J Microbiol Methods; 2007 Jan; 68(1):201-8. PubMed ID: 16997404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct fluorescent monoclonal antibody stain for rapid detection of infant Chlamydia trachomatis infections.
    Bell TA; Kuo CC; Stamm WE; Tam MR; Stephens RS; Holmes KK; Grayston JT
    Pediatrics; 1984 Aug; 74(2):224-8. PubMed ID: 6379589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia trachomatis infection of the female genital tract. Pathogenetic and clinicopathologic correlations.
    Winkler B; Crum CP
    Pathol Annu; 1987; 22 Pt 1():193-223. PubMed ID: 3554120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.