These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2843528)

  • 1. Activation by saturated and monounsaturated fatty acids of the O2- -generating system in a cell-free preparation from neutrophils.
    Tanaka T; Makino R; Iizuka T; Ishimura Y; Kanegasaki S
    J Biol Chem; 1988 Sep; 263(27):13670-6. PubMed ID: 2843528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saturated and trans-unsaturated fatty acids elicit high levels of superoxide generation in intact and cell-free preparations of neutrophils.
    Tanaka T; Kanegasaki S; Makino R; Iizuka T; Ishimura Y
    Biochem Biophys Res Commun; 1987 Apr; 144(2):606-12. PubMed ID: 3034258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the neutrophil NADPH-oxidase by free fatty acids requires the ionized carboxyl group and partitioning into membrane lipid.
    Steinbeck MJ; Robinson JM; Karnovsky MJ
    J Leukoc Biol; 1991 Apr; 49(4):360-8. PubMed ID: 1848271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arachidonate stimulates prolactin release in vitro: a role for the fatty acid and its metabolites as intracellular regulator(s) in mammotrophs.
    Canonico PL; Judd AM; Koike K; Valdenegro CA; MacLeod RM
    Endocrinology; 1985 Jan; 116(1):218-25. PubMed ID: 2981065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils.
    Badwey JA; Curnutte JT; Karnovsky ML
    J Biol Chem; 1981 Dec; 256(24):12640-3. PubMed ID: 6273400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsaturated fatty acids and lipoxygenase products regulate phagocytic NADPH oxidase activity by a nondetergent mechanism.
    Corey SJ; Rosoff PM
    J Lab Clin Med; 1991 Oct; 118(4):343-51. PubMed ID: 1940576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of Ca2+ mobilizing action of arachidonic acid in human platelets.
    Tohmatsu T; Nakashima S; Nozawa Y
    Biochim Biophys Acta; 1989 Jun; 1012(1):97-102. PubMed ID: 2499358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calcium ion on fatty acid-induced generation of superoxide in guinea pig neutrophils.
    Morimoto YM; Sato E; Nobori K; Takahashi R; Utsumi K
    Cell Struct Funct; 1986 Jun; 11(2):143-55. PubMed ID: 3015427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of arachidonic acid-induced Ca2+ mobilization from rat liver microsomes.
    Chan KM; Turk J
    Biochim Biophys Acta; 1987 Apr; 928(2):186-93. PubMed ID: 3105593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium.
    Yamaguchi T; Kaneda M; Kakinuma K
    Biochim Biophys Acta; 1986 Oct; 861(3):440-6. PubMed ID: 3021216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat neutrophil activation and effects of lipoxygenase and cyclooxygenase inhibitors.
    Ward PA; Sulavik MC; Johnson KJ
    Am J Pathol; 1984 Aug; 116(2):223-33. PubMed ID: 6087668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of O2.- generating oxidase of bovine neutrophils in a cell-free system. Interaction of a cytosolic factor with the plasma membrane and control by G nucleotides.
    Ligeti E; Tardif M; Vignais PV
    Biochemistry; 1989 Aug; 28(17):7116-23. PubMed ID: 2554964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arachidonic acid-induced calcium influx in human platelets. Comparison with the effect of thrombin.
    Alonso MT; Sanchez A; Garcia-Sancho J
    Biochem J; 1990 Dec; 272(2):435-43. PubMed ID: 2125206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nordihydroguaiaretic acid inhibits urokinase synthesis by phorbol myristate acetate-stimulated LLC-PK1 cells.
    Rondeau E; Guidet B; Lacave R; Bens M; Sraer J; Nagamine Y; Ardaillou R; Sraer JD
    Biochim Biophys Acta; 1990 Nov; 1055(2):165-72. PubMed ID: 2122915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of NADPH-dependent superoxide production in plasma membrane extracts of pig neutrophils by phosphatidic acid.
    Bellavite P; Corso F; Dusi S; Grzeskowiak M; Della-Bianca V; Rossi F
    J Biol Chem; 1988 Jun; 263(17):8210-4. PubMed ID: 2836419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+.
    Murakami K; Routtenberg A
    FEBS Lett; 1985 Nov; 192(2):189-93. PubMed ID: 3934001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils.
    Takenawa T; Ishitoya J; Nagai Y
    J Biol Chem; 1986 Jan; 261(3):1092-8. PubMed ID: 3003053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages.
    Bromberg Y; Pick E
    Cell Immunol; 1984 Oct; 88(1):213-21. PubMed ID: 6090027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of distinct activation pathways of the human neutrophil NADPH-oxidase.
    Maridonneau-Parini I; Tringale SM; Tauber AI
    J Immunol; 1986 Nov; 137(9):2925-9. PubMed ID: 3020128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.