BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2843563)

  • 1. The effect of pyrophosphate on the reaction of myosin with 2,4,6-trinitrobenzene sulphonate.
    Setton A; Muhlrad A
    J Muscle Res Cell Motil; 1988 Apr; 9(2):132-46. PubMed ID: 2843563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trinitrophenylation of rabbit skeletal myosin by 2,4,6-trinitrobenzene sulfonate and treatment of trinitrophenyl myosin with dithiothreitol.
    Kodama S; Konno K; Arai K; Watanabe S
    J Biochem; 1985 Mar; 97(3):831-6. PubMed ID: 2991209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half-stoichiometric trinitrophenylation of myosin subfragment 1 in the presence of pyrophosphate or adenosine diphosphate.
    Komatsu H; Emoto Y; Tawada K
    J Biol Chem; 1993 Apr; 268(11):7799-808. PubMed ID: 8385121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionization of reactive lysyl residue to myosin subfragment 1.
    Muhlrad A; Takashi R
    Biochemistry; 1981 Nov; 20(24):6749-54. PubMed ID: 6119107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the amino groups of myosin-ATPase. II. Localization of the amino groups.
    Muhlrad A; Afolayan A
    J Mechanochem Cell Motil; 1975; 3(2):99-101. PubMed ID: 129497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identical behavior of the two active sites of myosin with respect to trinitrophenylation.
    Mühlrad A; Lamed R; Oplatka A
    J Biol Chem; 1975 Jan; 250(1):175-81. PubMed ID: 124728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Mg2+ vs Ca2+, K+ and actin-activation of myosin after trinitrophenylation.
    Wikman-Coffelt J; Higuchi M; Fabian F; Mason DT
    Res Commun Chem Pathol Pharmacol; 1979 Sep; 25(3):565-75. PubMed ID: 41296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of adenosinetriphosphatase activity of trinitrophenylated myosin subfragment 1.
    Muhlrad A
    Biochemistry; 1983 Jul; 22(15):3653-60. PubMed ID: 6225457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trinitrophenylation of smooth muscle myosin.
    Srivastava S; Ikebe M; Hartshorne DJ
    Biochem Biophys Res Commun; 1985 Jan; 126(2):748-55. PubMed ID: 3156591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on amino and thiol groups in myosins from different sources.
    Muhlrad A; Oplatka A; Lamed R
    Biochim Biophys Acta; 1976 Nov; 452(1):227-38. PubMed ID: 136275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trinitrophenylation of the reactive lysine residue in double-headed myosin in the presence of PP.
    Komatsu H; Tawada K
    J Biochem; 1994 Jun; 115(6):1190-6. PubMed ID: 7982903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of cardiac and smooth muscle myosins with 2,4,6-trinitrobenzenesulfonate. Evidence for differences in structure around the active sites of cardiac, smooth, and skeletal muscle myosin ATPase.
    Srivastava SK; Tonomura Y; Inoue A
    J Biochem; 1979 Sep; 86(3):725-31. PubMed ID: 159905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment 1.
    Takashi R; Muhlrad A; Botts J
    Biochemistry; 1982 Oct; 21(22):5661-8. PubMed ID: 6216915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of trinitrophenylation on the correlation between ATPase activity and superprecipitation of skeletal actomyosins.
    Kaldor G
    Physiol Chem Phys; 1975; 7(5):391-9. PubMed ID: 128006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis.
    Ajtai K; Peyser YM; Park S; Burghardt TP; Muhlrad A
    Biochemistry; 1999 May; 38(20):6428-40. PubMed ID: 10350461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characteristics of cardiac myosin: the pH dependence of Ca-ATPase activity, and that of the absorption spectrum of 2,4,6-trinitrophenyl groups attached to myosin.
    Kameyama S; Ichikawa H; Sunaga Y; Nakata S; Saito Y; Eiki T; Watanabe S
    J Biochem; 1985 Feb; 97(2):625-32. PubMed ID: 3159719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of bivalent and monovalent cations in the functioning of myosin ATPase].
    Levitskiĭ DI; Poglazov BF
    Biokhimiia; 1980 Dec; 45(12):2233-42. PubMed ID: 6454445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ATPase activities of myosins isolated from the membrane and the cytoplasmic fractions of human platelets.
    Peleg I; Muhlrad A; Eldor A; Groschel-Stewart U; Kahane I
    Arch Biochem Biophys; 1984 Nov; 234(2):442-53. PubMed ID: 6149726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual features of the Ca2+-ATPase activity of myosin from fast skeletal muscle of the frog: effect of actin and SH1 thiol group modification.
    Strzelecka-Gołaszewska H; Pliszka B; Mossakowska M; Piwowar U
    J Muscle Res Cell Motil; 1983 Apr; 4(2):191-206. PubMed ID: 6134751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional integrity of the SH1 site in myosin from hypertrophied myocardium.
    Thomas LL; Alpert NR
    Biochim Biophys Acta; 1977 Apr; 481(2):680-8. PubMed ID: 139935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.