These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 28435878)

  • 1. Evolutionary dynamics of CRISPR gene drives.
    Noble C; Olejarz J; Esvelt KM; Church GM; Nowak MA
    Sci Adv; 2017 Apr; 3(4):e1601964. PubMed ID: 28435878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerning RNA-guided gene drives for the alteration of wild populations.
    Esvelt KM; Smidler AL; Catteruccia F; Church GM
    Elife; 2014 Jul; 3():. PubMed ID: 25035423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives).
    Gantz VM; Bier E
    Bioessays; 2022 Aug; 44(8):e2100279. PubMed ID: 35686327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The promise and peril of CRISPR gene drives: Genetic variation and inbreeding may impede the propagation of gene drives based on the CRISPR genome editing technology.
    Zentner GE; Wade MJ
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28863233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cheating evolution: engineering gene drives to manipulate the fate of wild populations.
    Champer J; Buchman A; Akbari OS
    Nat Rev Genet; 2016 Mar; 17(3):146-59. PubMed ID: 26875679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Why so rare if so essentiel: the determinants of the sparse distribution of CRISPR-Cas systems in bacterial genomes].
    Bernheim A
    Biol Aujourdhui; 2017; 211(4):255-264. PubMed ID: 29956652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs.
    Champer SE; Oh SY; Liu C; Wen Z; Clark AG; Messer PW; Champer J
    Sci Adv; 2020 Mar; 6(10):eaaz0525. PubMed ID: 32181354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of CRISPR-Cas systems in neuroscience.
    Heidenreich M; Zhang F
    Nat Rev Neurosci; 2016 Jan; 17(1):36-44. PubMed ID: 26656253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
    Noble C; Adlam B; Church GM; Esvelt KM; Nowak MA
    Elife; 2018 Jun; 7():. PubMed ID: 29916367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [CRISPR-Cas9, a new chance for somatic gene therapy].
    Jordan B
    Med Sci (Paris); 2015 Nov; 31(11):1035-8. PubMed ID: 26576611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Based Gene Drives for Pest Control.
    McFarlane GR; Whitelaw CBA; Lillico SG
    Trends Biotechnol; 2018 Feb; 36(2):130-133. PubMed ID: 29221716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications.
    Aman Mohammadi M; Maximiano MR; Hosseini SM; Franco OL
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):483-497. PubMed ID: 36707422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas systems: beyond adaptive immunity.
    Westra ER; Buckling A; Fineran PC
    Nat Rev Microbiol; 2014 May; 12(5):317-26. PubMed ID: 24704746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins.
    Zhu Y; Zhang F; Huang Z
    BMC Biol; 2018 Mar; 16(1):32. PubMed ID: 29554913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.
    Gophna U; Kristensen DM; Wolf YI; Popa O; Drevet C; Koonin EV
    ISME J; 2015 Sep; 9(9):2021-7. PubMed ID: 25710183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness effects of CRISPR endonucleases in
    Langmüller AM; Champer J; Lapinska S; Xie L; Metzloff M; Champer SE; Liu J; Xu Y; Du J; Clark AG; Messer PW
    Elife; 2022 Sep; 11():. PubMed ID: 36135925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
    Ahmed MZ; Badani P; Reddy R; Mishra G
    J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.