These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28436046)

  • 1. Simulation-based adjustment after exploratory biomarker subgroup selection in phase II.
    Götte H; Kirchner M; Sailer MO; Kieser M
    Stat Med; 2017 Jul; 36(15):2378-2390. PubMed ID: 28436046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probability of success for phase III after exploratory biomarker analysis in phase II.
    Götte H; Kirchner M; Sailer MO
    Pharm Stat; 2017 May; 16(3):178-191. PubMed ID: 28230320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian approach to two-stage phase II trial.
    Pepple PA; Choi SC
    J Biopharm Stat; 1997 May; 7(2):271-86. PubMed ID: 9136069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian adaptive patient enrollment restriction to identify a sensitive subpopulation using a continuous biomarker in a randomized phase 2 trial.
    Ohwada S; Morita S
    Pharm Stat; 2016 Sep; 15(5):420-9. PubMed ID: 27485377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shrinkage estimation in two-stage adaptive designs with midtrial treatment selection.
    Carreras M; Brannath W
    Stat Med; 2013 May; 32(10):1677-90. PubMed ID: 22744936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal sequential enrichment designs for phase II clinical trials.
    Zang Y; Yuan Y
    Stat Med; 2017 Jan; 36(1):54-66. PubMed ID: 27640874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies.
    Barry WT; Perou CM; Marcom PK; Carey LA; Ibrahim JG
    J Biopharm Stat; 2015; 25(1):66-88. PubMed ID: 24836519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjustment for exploratory cut-off selection in randomized clinical trials with survival endpoint.
    Götte H; Kirchner M; Kieser M
    Biom J; 2020 May; 62(3):627-642. PubMed ID: 31588609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extension of Bayesian predictive sample size selection designs for monitoring efficacy and safety.
    Teramukai S; Daimon T; Zohar S
    Stat Med; 2015 Sep; 34(22):3029-39. PubMed ID: 26038148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point estimation in adaptive enrichment designs.
    Kunzmann K; Benner L; Kieser M
    Stat Med; 2017 Nov; 36(25):3935-3947. PubMed ID: 28783881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of single-arm vs. randomized phase II clinical trials: a Bayesian approach.
    Sambucini V
    J Biopharm Stat; 2015; 25(3):474-89. PubMed ID: 24896838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining biomarkers for classification with covariate adjustment.
    Kim S; Huang Y
    Stat Med; 2017 Jul; 36(15):2347-2362. PubMed ID: 28276080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarker-based Bayesian randomized phase II clinical trial design to identify a sensitive patient subpopulation.
    Morita S; Yamamoto H; Sugitani Y
    Stat Med; 2014 Oct; 33(23):4008-16. PubMed ID: 24820639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical approach to assess the predictive value of biomarkers in Phase II decision making.
    Nikolakopoulos S; van der Wal WM; Roes KC
    J Biopharm Stat; 2013; 23(5):1106-23. PubMed ID: 23957519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subgroup finding via Bayesian additive regression trees.
    Sivaganesan S; Müller P; Huang B
    Stat Med; 2017 Jul; 36(15):2391-2403. PubMed ID: 28276142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation in multi-arm two-stage trials with treatment selection and time-to-event endpoint.
    Brückner M; Titman A; Jaki T
    Stat Med; 2017 Sep; 36(20):3137-3153. PubMed ID: 28612371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology.
    Brannath W; Zuber E; Branson M; Bretz F; Gallo P; Posch M; Racine-Poon A
    Stat Med; 2009 May; 28(10):1445-63. PubMed ID: 19266565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interval and point estimation in adaptive Phase II trials with binary endpoint.
    Nhacolo A; Brannath W
    Stat Methods Med Res; 2019 Sep; 28(9):2635-2648. PubMed ID: 29921157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous toxicity monitoring in phase II trials in oncology.
    Ivanova A; Qaqish BF; Schell MJ
    Biometrics; 2005 Jun; 61(2):540-5. PubMed ID: 16011702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firth's logistic regression with rare events: accurate effect estimates and predictions?
    Puhr R; Heinze G; Nold M; Lusa L; Geroldinger A
    Stat Med; 2017 Jun; 36(14):2302-2317. PubMed ID: 28295456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.