These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28436054)

  • 1. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.
    Shou W; Mahajan BK; Ludwig B; Yu X; Staggs J; Huang X; Pan H
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.
    Yu X; Shou W; Mahajan BK; Huang X; Pan H
    Adv Mater; 2018 Jul; 30(28):e1707624. PubMed ID: 29736971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.
    Mahajan BK; Yu X; Shou W; Pan H; Huang X
    Small; 2017 May; 13(17):. PubMed ID: 28218485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects.
    Li J; Luo S; Liu J; Xu H; Huang X
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.
    Lee YK; Kim J; Kim Y; Kwak JW; Yoon Y; Rogers JA
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics.
    Feng S; Cao S; Tian Z; Zhu H; Kong D
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45844-45852. PubMed ID: 31718133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures.
    Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK
    Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Bandage-Based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering.
    Agarwala S; Goh GL; Dinh Le TS; An J; Peh ZK; Yeong WY; Kim YJ
    ACS Sens; 2019 Jan; 4(1):218-226. PubMed ID: 30560661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-facilitated nanoparticle sintering and component interconnection procedure.
    Allen M; Leppäniemi J; Vilkman M; Alastalo A; Mattila T
    Nanotechnology; 2010 Nov; 21(47):475204. PubMed ID: 21030761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-Sintered Transient Nanocomposites Used as Electrical Interconnects for Dissolvable Consumer Electronics.
    Li J; Liu J; Lu W; Wu Z; Yu J; Wang B; Ma Z; Huo W; Huang X
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32136-32148. PubMed ID: 34225448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization.
    Shou W; Ludwig B; Wang L; Gong X; Yu X; Grigoropoulos CP; Pan H
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34416-34423. PubMed ID: 31438669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle piezoresistive sensors fabricated by roll-to-roll slot-die coating and laser direct writing.
    Lee H; Lee D; Hwang J; Nam D; Byeon C; Ko SH; Lee S
    Opt Express; 2014 Apr; 22(8):8919-27. PubMed ID: 24787781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.