These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28436215)

  • 1. Multilayer Nanofilms via Inkjet Printing for Stabilizing Growth Factor and Designing Desired Cell Developments.
    Choi M; Park HH; Choi D; Han U; Park TH; Lee H; Park J; Hong J
    Adv Healthc Mater; 2017 Jul; 6(14):. PubMed ID: 28436215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell cultures.
    Park JH; Hong J
    Integr Biol (Camb); 2014 Dec; 6(12):1196-200. PubMed ID: 25316061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printing-Based Patchable Multilayered Biomolecule-Containing Nanofilms for Biomedical Applications.
    Choi M; Heo J; Yang M; Hong J
    ACS Biomater Sci Eng; 2017 Jun; 3(6):870-874. PubMed ID: 33429558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Encapsulation and Sustained Release of Basic Fibroblast Growth Factor in Nanofilm: Extension of the Feeding Cycle of Human Induced Pluripotent Stem Cell Culture.
    Han U; Park HH; Kim YJ; Park TH; Park JH; Hong J
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25087-25097. PubMed ID: 28686012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of nano-scale cellular environments by coating a multilayer nanofilm on the surface of human induced pluripotent stem cells.
    Han U; Kim YJ; Kim W; Park JH; Hong J
    Nanoscale; 2019 Jul; 11(28):13541-13551. PubMed ID: 31290516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor.
    Han U; Hong J
    Mol Pharm; 2018 Mar; 15(3):1277-1283. PubMed ID: 29364691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stable chimeric fibroblast growth factor (FGF) can successfully replace basic FGF in human pluripotent stem cell culture.
    Onuma Y; Higuchi K; Aiki Y; Shu Y; Asada M; Asashima M; Suzuki M; Imamura T; Ito Y
    PLoS One; 2015; 10(4):e0118931. PubMed ID: 25850016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of bFGF-chitosan matrices and their interactions with human dermal fibroblast cells.
    Lefler A; Ghanem A
    J Biomater Sci Polym Ed; 2009; 20(10):1335-51. PubMed ID: 19622275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering.
    de la Puente P; Ludeña D; Fernández A; Aranda JL; Varela G; Iglesias J
    J Biomed Mater Res A; 2011 Dec; 99(4):648-54. PubMed ID: 21954088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways.
    Makino T; Jinnin M; Muchemwa FC; Fukushima S; Kogushi-Nishi H; Moriya C; Igata T; Fujisawa A; Johno T; Ihn H
    Br J Dermatol; 2010 Apr; 162(4):717-23. PubMed ID: 19995368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparin-conjugated alginate multilayered microspheres for controlled release of bFGF.
    Zuo Q; Guo R; Liu Q; Hong A; Shi Y; Kong Q; Huang Y; He L; Xue W
    Biomed Mater; 2015 Jun; 10(3):035008. PubMed ID: 26041143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.
    Chen F; Zhang G; Yu L; Feng Y; Li X; Zhang Z; Wang Y; Sun D; Pradhan S
    Stem Cell Res Ther; 2016 Jul; 7(1):99. PubMed ID: 27473118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent superwetting nanofilms with enhanced durability at model physiological condition.
    Hwangbo S; Heo J; Lin X; Choi M; Hong J
    Sci Rep; 2016 Jan; 6():19178. PubMed ID: 26764164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts.
    Chen M; Sun X; Jiang R; Shen W; Zhong X; Liu B; Qi Y; Huang B; Xiang AP; Ge J
    Cell Biol Int; 2009 Dec; 33(12):1268-73. PubMed ID: 19524692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
    Hartung O; Huo H; Daley GQ; Schlaeger TM
    Curr Protoc Stem Cell Biol; 2010 Aug; Chapter 1():Unit 1C.10. PubMed ID: 20814935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm.
    Huang H; Pierstorff E; Osawa E; Ho D
    ACS Nano; 2008 Feb; 2(2):203-12. PubMed ID: 19206620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-Layer assembled growth factor reservoirs for steering the response of 3T3-cells.
    Naves AF; Motay M; Mérindol R; Davi CP; Felix O; Catalani LH; Decher G
    Colloids Surf B Biointerfaces; 2016 Mar; 139():79-86. PubMed ID: 26700236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.
    Sebe A; Ivics Z
    Methods Mol Biol; 2016; 1400():419-27. PubMed ID: 26895068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells.
    Zhou W; Freed CR
    Stem Cells; 2009 Nov; 27(11):2667-74. PubMed ID: 19697349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.
    Gao P; Hunter A; Benavides S; Summe MJ; Gao F; Phillip WA
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3386-95. PubMed ID: 26785390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.