These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28436382)

  • 41. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries.
    Jiang ZJ; Jiang Z
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19082-91. PubMed ID: 25310365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of VO Nanorings on a Porous Carbon Architecture for High-Performance Li-Ion Batteries.
    Liu X; Li G; Wu J; Zhang D; Li L
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9454-9463. PubMed ID: 35142212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal Organic Frameworks Derived Hierarchical Hollow NiO/Ni/Graphene Composites for Lithium and Sodium Storage.
    Zou F; Chen YM; Liu K; Yu Z; Liang W; Bhaway SM; Gao M; Zhu Y
    ACS Nano; 2016 Jan; 10(1):377-86. PubMed ID: 26592379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constructing Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries.
    Zhao D; Cao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25084-93. PubMed ID: 26502345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene oxide assisted template-free synthesis of nanoscale splode-like NiCo
    Rong H; Jiang Z; Tian X; Qin Y; Cheng S; Wang F; Jiang ZJ
    J Colloid Interface Sci; 2018 Feb; 511():119-127. PubMed ID: 29017097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ preparation of Fe
    Liu Y; Hassan Siddique A; Huang H; Fang Q; Deng W; Zhou X; Lu H; Liu Z
    Nanotechnology; 2017 Nov; 28(46):465401. PubMed ID: 29063865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries.
    Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sandwich-Like Co₃O₄/Graphene Nanocomposites as Anode Material for Lithium Ion Batteries.
    Mu JC; Wang EQ; Zhang YL; Zhang LP
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7819-7825. PubMed ID: 31196294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery.
    Wang J; Deng Q; Li M; Wu C; Jiang K; Hu Z; Chu J
    Nanotechnology; 2018 Aug; 29(31):315403. PubMed ID: 29757153
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.
    Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Double-shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high-performance aqueous zinc-ion batteries.
    Wang S; Zhang S; Chen X; Yuan G; Wang B; Bai J; Wang H; Wang G
    J Colloid Interface Sci; 2020 Nov; 580():528-539. PubMed ID: 32711203
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes.
    Zhou D; Song WL; Li X; Fan LZ
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13410-7. PubMed ID: 27169479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Template-Free Synthesis of Sb
    Xie J; Liu L; Xia J; Zhang Y; Li M; Ouyang Y; Nie S; Wang X
    Nanomicro Lett; 2018; 10(1):12. PubMed ID: 30393661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mesoporous ZnMn
    Luo X; Zhang X; Chen L; Li L; Zhu G; Chen G; Yan D; Xu H; Yu A
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33170-33178. PubMed ID: 30183243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage.
    Jin S; Li N; Cui H; Wang C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19397-404. PubMed ID: 25343315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries.
    Zhang B; Xia G; Sun D; Fang F; Yu X
    ACS Nano; 2018 Apr; 12(4):3816-3824. PubMed ID: 29608285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage.
    Wu L; Huang S; Dong W; Li Y; Wang Z; Mohamed HSH; Li Y; Su BL
    J Colloid Interface Sci; 2021 Jul; 594():531-539. PubMed ID: 33774409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.