BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28436473)

  • 1. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography.
    Chen X; Zhang C; Lin P; Huang KC; Liang J; Tian J; Cheng JX
    Nat Commun; 2017 Apr; 8():15117. PubMed ID: 28436473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging chemistry inside living cells by stimulated Raman scattering microscopy.
    Lee HJ; Cheng JX
    Methods; 2017 Sep; 128():119-128. PubMed ID: 28746829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tilt-angle stimulated Raman projection tomography.
    Lin P; Li C; Flores-Valle A; Wang Z; Zhang M; Cheng R; Cheng JX
    Opt Express; 2022 Sep; 30(20):37112-37123. PubMed ID: 36258628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy.
    Ferrara MA; Filograna A; Ranjan R; Corda D; Valente C; Sirleto L
    PLoS One; 2019; 14(5):e0216811. PubMed ID: 31112567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy.
    Wei M; Shi L; Shen Y; Zhao Z; Guzman A; Kaufman LJ; Wei L; Min W
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6608-6617. PubMed ID: 30872474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope.
    Lin P; Ni H; Li H; Vickers NA; Tan Y; Gong R; Bifano T; Cheng JX
    Opt Express; 2020 Sep; 28(20):30210-30221. PubMed ID: 33114904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
    Laptenok SP; Rajamanickam VP; Genchi L; Monfort T; Lee Y; Patel II; Bertoncini A; Liberale C
    J Biophotonics; 2019 Sep; 12(9):e201900028. PubMed ID: 31081280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular Imaging Using Stimulated Raman Scattering Microscopy.
    Hill AH; Fu D
    Anal Chem; 2019 Aug; 91(15):9333-9342. PubMed ID: 31287649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of optical projection tomography and light-sheet fluorescence microscopy.
    Liu A; Xiao W; Li R; Liu L; Chen L
    J Microsc; 2019 Jul; 275(1):3-10. PubMed ID: 31012490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Chemical Imaging of Latent Fingerprints with Stimulated Raman Scattering Microscopy.
    Figueroa B; Chen Y; Berry K; Francis A; Fu D
    Anal Chem; 2017 Apr; 89(8):4468-4473. PubMed ID: 28322553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography.
    Wang N; Wang X; Yan T; Xie H; Wang L; Ren F; Chen D; Zhang D; Zeng Q; Zhu S; Chen X
    Sci Adv; 2023 Mar; 9(12):eadf3504. PubMed ID: 36961894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oblique scanning 2-photon light-sheet fluorescence microscopy for rapid volumetric imaging.
    Shin Y; Kim D; Kwon HS
    J Biophotonics; 2018 May; 11(5):e201700270. PubMed ID: 29283513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Imaging Microscopy for Quantitative Analysis of Biological Samples.
    Kajimoto S; Takeuchi M; Nakabayashi T
    Adv Exp Med Biol; 2017; 1035():163-172. PubMed ID: 29080138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging.
    Golreihan A; Steuwe C; Woelders L; Deprez A; Fujita Y; Vellekoop J; Swennen R; Roeffaers MBJ
    PLoS One; 2018; 13(7):e0199695. PubMed ID: 29995961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological imaging of chemical bonds by stimulated Raman scattering microscopy.
    Hu F; Shi L; Min W
    Nat Methods; 2019 Sep; 16(9):830-842. PubMed ID: 31471618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid, high-contrast, and steady volumetric imaging with Bessel-beam-based two-photon fluorescence microscopy.
    Chen Y; Luo C; Wang S; Li Y; Shen B; Hu R; Qu J; Liu L
    J Biomed Opt; 2024 Jan; 29(1):016501. PubMed ID: 38269082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
    Shi L; Klimas A; Gallagher B; Cheng Z; Fu F; Wijesekara P; Miao Y; Ren X; Zhao Y; Min W
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200315. PubMed ID: 35521971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstrating Improved Multiple Transport-Mean-Free-Path Imaging Capabilities of Light Sheet Microscopy in the Quantification of Fluorescence Dynamics.
    Rieckher M; Psycharakis Daniele Ancora SE; Liapis E; Zacharopoulos A; Ripoll J; Tavernarakis N; Zacharakis G
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29168308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free optical projection tomography for quantitative three-dimensional anatomy of mouse embryo.
    Ban S; Cho NH; Min E; Bae JK; Ahn Y; Shin S; Park SA; Lee Y; Jung W
    J Biophotonics; 2019 Jul; 12(7):e201800481. PubMed ID: 30729697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.