These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28436503)

  • 1. Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries.
    Nakajima S; Kawano R; Onoe H
    Soft Matter; 2017 May; 13(20):3710-3719. PubMed ID: 28436503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices.
    Lim D; Lee E; Kim H; Park S; Baek S; Yoon J
    Soft Matter; 2015 Feb; 11(8):1606-13. PubMed ID: 25594916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Fabrication of Multistimuli-Responsive Tubular Hydrogels for Cellular Scaffolds.
    Kim D; Jo A; Imani KBC; Kim D; Chung JW; Yoon J
    Langmuir; 2018 Apr; 34(14):4351-4359. PubMed ID: 29553747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation.
    Liu Y; Zhang K; Ma J; Vancso GJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):901-908. PubMed ID: 28026935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3D hydrogels.
    Madl CM; Keeney M; Li X; Han LH; Yang F
    Tissue Eng Part C Methods; 2014 Oct; 20(10):798-805. PubMed ID: 24483329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation.
    Shang J; Theato P
    Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Spun Alginate Hydrogel Microfibers and Their Application in Tissue Engineering.
    Sun T; Li X; Shi Q; Wang H; Huang Q; Fukuda T
    Gels; 2018 Apr; 4(2):. PubMed ID: 30674814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries.
    Nishimura K; Morimoto Y; Mori N; Takeuchi S
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.
    Zheng WJ; An N; Yang JH; Zhou J; Chen YM
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1758-64. PubMed ID: 25561431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.
    Zhou T; NajafiKhoshnoo S; Esfandyarpour R; Kulinsky L
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning.
    Hou K; Wang H; Lin Y; Chen S; Yang S; Cheng Y; Hsiao BS; Zhu M
    Macromol Rapid Commun; 2016 Nov; 37(22):1795-1801. PubMed ID: 27739218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Multistimuli-Responsive Anisotropic Bilayer Hydrogel Actuators by Integrating LCST Phase Transition and Photochromic Isomerization.
    Long S; Huang J; Xiong J; Liu C; Chen F; Shen J; Huang Y; Li X
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.