BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28436517)

  • 1. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.
    Elsutohy MM; Chauhan VM; Markus R; Kyyaly MA; Tendler SJB; Aylott JW
    Nanoscale; 2017 May; 9(18):5904-5911. PubMed ID: 28436517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM; Burnett GR; Aylott JW
    Analyst; 2011 May; 136(9):1799-801. PubMed ID: 21416087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors.
    Chauhan VM; Orsi G; Brown A; Pritchard DI; Aylott JW
    ACS Nano; 2013 Jun; 7(6):5577-87. PubMed ID: 23668893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation.
    Hollmann B; Perkins M; Chauhan VM; Aylott JW; Hardie KR
    NPJ Biofilms Microbiomes; 2021 Jun; 7(1):50. PubMed ID: 34140515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.
    Søndergaard RV; Henriksen JR; Andresen TL
    Nat Protoc; 2014 Dec; 9(12):2841-58. PubMed ID: 25411952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature.
    Zhang XA; Zhang W; Wang Q; Wang J; Ren G; Wang XD
    Mikrochim Acta; 2019 Jul; 186(8):584. PubMed ID: 31363852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced distance-dependent fluorescence quenching using size tuneable core shell silica nanoparticles.
    Elsutohy MM; Selo A; Chauhan VM; Tendler SJB; Aylott JW
    RSC Adv; 2018 Oct; 8(62):35840-35848. PubMed ID: 35547883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.
    Stanca SE; Nietzsche S; Fritzsche W; Cranfield CG; Biskup C
    Nanotechnology; 2010 Feb; 21(5):055501. PubMed ID: 20023314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.
    Zhang Y; Guo S; Cheng S; Ji X; He Z
    Biosens Bioelectron; 2017 Aug; 94():478-484. PubMed ID: 28342376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Novel, Ecologically Friendly Generation of pH-Responsive Alginate Nanosensors: Synthesis, Calibration, and Characterisation.
    Alwraikat A; Jaradat A; Marji SM; Bayan MF; Alomari E; Naser AY; Alyami MH
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement.
    Desai AS; Chauhan VM; Johnston AP; Esler T; Aylott JW
    Front Physiol; 2013; 4():401. PubMed ID: 24474936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface.
    Kromer C; Katz A; Feldmann I; Laux P; Luch A; Tschiche HR
    Sci Rep; 2024 May; 14(1):12302. PubMed ID: 38811698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH-sensing using core/shell silica nanoparticles.
    Korzeniowska B; Woolley R; DeCourcey J; Wencel D; Loscher CE; McDonagh C
    J Biomed Nanotechnol; 2014 Jul; 10(7):1336-45. PubMed ID: 24804554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon nano-PEBBLE sensors: subcellular pH measurements.
    Ray A; Koo Lee YE; Epstein T; Kim G; Kopelman R
    Analyst; 2011 Sep; 136(18):3616-22. PubMed ID: 21773602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting oxygen consumption in the proximity of Saccharomyces cerevisiae cells using self-assembled fluorescent nanosensors.
    Kuang Y; Walt DR
    Biotechnol Bioeng; 2007 Feb; 96(2):318-25. PubMed ID: 16878334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating nanoparticle sensor design for intracellular pH measurements.
    Benjaminsen RV; Sun H; Henriksen JR; Christensen NM; Almdal K; Andresen TL
    ACS Nano; 2011 Jul; 5(7):5864-73. PubMed ID: 21707035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells.
    Sun H; Andresen TL; Benjaminsen RV; Almdal K
    J Biomed Nanotechnol; 2009 Dec; 5(6):676-82. PubMed ID: 20201229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae.
    Haworth RS; Lemire BD; Crandall D; Cragoe EJ; Fliegel L
    Biochim Biophys Acta; 1991 Dec; 1098(1):79-89. PubMed ID: 1661160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.