These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
810 related articles for article (PubMed ID: 28436741)
1. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Lakhani P; Sundaram B Radiology; 2017 Aug; 284(2):574-582. PubMed ID: 28436741 [TBL] [Abstract][Full Text] [Related]
2. Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities. Lakhani P J Digit Imaging; 2017 Aug; 30(4):460-468. PubMed ID: 28600640 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Critical Feeding Tube Malpositions on Radiographs Using Deep Learning. Singh V; Danda V; Gorniak R; Flanders A; Lakhani P J Digit Imaging; 2019 Aug; 32(4):651-655. PubMed ID: 31073816 [TBL] [Abstract][Full Text] [Related]
4. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning. Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs. Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585 [TBL] [Abstract][Full Text] [Related]
6. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs. Cicero M; Bilbily A; Colak E; Dowdell T; Gray B; Perampaladas K; Barfett J Invest Radiol; 2017 May; 52(5):281-287. PubMed ID: 27922974 [TBL] [Abstract][Full Text] [Related]
7. Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs. Yi PH; Kim TK; Lin CT Clin Imaging; 2022 Jul; 87():34-37. PubMed ID: 35483162 [TBL] [Abstract][Full Text] [Related]
8. Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms. Li D; Lin CT; Sulam J; Yi PH Emerg Radiol; 2022 Apr; 29(2):365-370. PubMed ID: 35006495 [TBL] [Abstract][Full Text] [Related]
9. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. Rajkomar A; Lingam S; Taylor AG; Blum M; Mongan J J Digit Imaging; 2017 Feb; 30(1):95-101. PubMed ID: 27730417 [TBL] [Abstract][Full Text] [Related]
10. Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. Adams M; Chen W; Holcdorf D; McCusker MW; Howe PD; Gaillard F J Med Imaging Radiat Oncol; 2019 Feb; 63(1):27-32. PubMed ID: 30407743 [TBL] [Abstract][Full Text] [Related]
11. Radiology "forensics": determination of age and sex from chest radiographs using deep learning. Yi PH; Wei J; Kim TK; Shin J; Sair HI; Hui FK; Hager GD; Lin CT Emerg Radiol; 2021 Oct; 28(5):949-954. PubMed ID: 34089126 [TBL] [Abstract][Full Text] [Related]
12. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
13. Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Dunnmon JA; Yi D; Langlotz CP; Ré C; Rubin DL; Lungren MP Radiology; 2019 Feb; 290(2):537-544. PubMed ID: 30422093 [TBL] [Abstract][Full Text] [Related]
14. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332 [TBL] [Abstract][Full Text] [Related]
15. A comparative study for glioma classification using deep convolutional neural networks. Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs. Lee S; Yim JJ; Kwak N; Lee YJ; Lee JK; Lee JY; Kim JS; Kang YA; Jeon D; Jang MJ; Goo JM; Yoon SH Radiology; 2021 Nov; 301(2):435-442. PubMed ID: 34342505 [TBL] [Abstract][Full Text] [Related]
17. Development and Validation of a Deep Learning-based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Hwang EJ; Park S; Jin KN; Kim JI; Choi SY; Lee JH; Goo JM; Aum J; Yim JJ; Park CM; Clin Infect Dis; 2019 Aug; 69(5):739-747. PubMed ID: 30418527 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. Lee JH; Park S; Hwang EJ; Goo JM; Lee WY; Lee S; Kim H; Andrews JR; Park CM Eur Radiol; 2021 Feb; 31(2):1069-1080. PubMed ID: 32857202 [TBL] [Abstract][Full Text] [Related]
19. Effect of augmented datasets on deep convolutional neural networks applied to chest radiographs. Ogawa R; Kido T; Kido T; Mochizuki T Clin Radiol; 2019 Sep; 74(9):697-701. PubMed ID: 31196565 [TBL] [Abstract][Full Text] [Related]
20. Computer-Aided System for the Detection of Multicategory Pulmonary Tuberculosis in Radiographs. Xie Y; Wu Z; Han X; Wang H; Wu Y; Cui L; Feng J; Zhu Z; Chen Z J Healthc Eng; 2020; 2020():9205082. PubMed ID: 32908660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]