These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28436752)

  • 1. Quantitative MR imaging of intra-orbital structures: Tissue-specific measurements and age dependency compared to extra-orbital structures using multispectral quantitative MR imaging.
    Watanabe M; Buch K; Fujita A; Jara H; Qureshi MM; Sakai O
    Orbit; 2017 Aug; 36(4):189-196. PubMed ID: 28436752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR relaxometry for the facial ageing assessment: the preliminary study of the age dependency in the MR relaxometry parameters within the facial soft tissue.
    Watanabe M; Buch K; Fujita A; Christiansen CL; Jara H; Sakai O
    Dentomaxillofac Radiol; 2015; 44(7):20150047. PubMed ID: 25974063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative measurements of orbital structures on magnetic resonance images; a cross-sectional study with mini review of the literature.
    Kızılgöz V; Aydın S; Aydemir H; Kantarcı M
    Surg Radiol Anat; 2024 May; 46(5):595-604. PubMed ID: 38565672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns.
    Saito N; Sakai O; Ozonoff A; Jara H
    Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution MR imaging anatomy of the orbit. Correlation with comparative cryosectional anatomy.
    Ettl A; Salomonowitz E; Koornneef L; Zonneveld FW
    Radiol Clin North Am; 1998 Nov; 36(6):1021-45, ix. PubMed ID: 9884686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of orbital soft tissues on computed tomography to assess the activity of thyroid-associated orbitopathy.
    Byun JS; Moon NJ; Lee JK
    Graefes Arch Clin Exp Ophthalmol; 2017 Feb; 255(2):413-420. PubMed ID: 27838736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI measurements of normal extraocular muscles and other orbital structures.
    Tian S; Nishida Y; Isberg B; Lennerstrand G
    Graefes Arch Clin Exp Ophthalmol; 2000 May; 238(5):393-404. PubMed ID: 10901470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study.
    Das T; Roos JCP; Patterson AJ; Graves MJ; Murthy R
    Eye (Lond); 2019 Feb; 33(2):235-243. PubMed ID: 30538310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative measurements of orbital structures using MRI.
    Ozgen A; Aydingöz U
    J Comput Assist Tomogr; 2000; 24(3):493-6. PubMed ID: 10864092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative measurements of Korean orbital structures revealed by computerized tomography.
    Lee JS; Lim DW; Lee SH; Oum BS; Kim HJ; Lee HJ
    Acta Ophthalmol Scand; 2001 Apr; 79(2):197-200. PubMed ID: 11284763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [MRI study of the thickness and width of the extraocular muscles in normal subjects].
    Li R; Xia S; Wang J; Sun F; Qi J
    Zhonghua Yan Ke Za Zhi; 2015 Jun; 51(6):434-8. PubMed ID: 26310117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Intra-Orbital Structures in Normal Chinese Adults Based on a Three-Dimensional Coordinate System.
    Ji Y; Lai C; Gu L; Fan X
    Curr Eye Res; 2018 Dec; 43(12):1477-1483. PubMed ID: 30118614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial approach to the orbit: microsurgical anatomy.
    Natori Y; Rhoton AL
    J Neurosurg; 1994 Jul; 81(1):78-86. PubMed ID: 8207530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [MR relaxation time measurements with and without selective fat suppression (SPIR) in endocrine orbitopathy].
    Pauleit D; Schüller H; Textor J; Leutner C; Keller E; Sommer T; Träber F; Block W; Boldt I; Schild H
    Rofo; 1997 Dec; 167(6):557-64. PubMed ID: 9465949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution magnetic resonance imaging of neurovascular orbital anatomy.
    Ettl A; Kramer J; Daxer A; Koornneef L
    Ophthalmology; 1997 May; 104(5):869-77. PubMed ID: 9160037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [X-RAY SEMIOTICS OF ENDOCRINE OPHTHALMOPATHY. PART 2. THE OPTIC NERVE, LACRIMAL GLAND, SUPERIOR OPHTHALMIC VEIN].
    Yatsenko OY; Tyurin IE
    Vestn Rentgenol Radiol; 2016; 97(6):325-32. PubMed ID: 30230784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Value of computerized tomography in the diagnosis of orbital changes in Graves-Basedow disease].
    Ziemiański A; Sowiński J; Sosnowski P
    Pol Przegl Radiol; 1983; 47(5-6):349-54. PubMed ID: 6379608
    [No Abstract]   [Full Text] [Related]  

  • 18. Fat-suppression MR imaging of the orbit.
    Simon J; Szumowski J; Totterman S; Kido D; Ekholm S; Wicks A; Plewes D
    AJNR Am J Neuroradiol; 1988 Sep; 9(5):961-8. PubMed ID: 3140642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normative measurements of orbital structures using CT.
    Ozgen A; Ariyurek M
    AJR Am J Roentgenol; 1998 Apr; 170(4):1093-6. PubMed ID: 9530066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.