These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28436752)

  • 21. Normal Lacrimal Gland Volumes by Magnetic Resonance Imaging and the Relationship of Lacrimal Gland Volume to Orbital Size.
    Tenzel PA; Moffa D; Decilveo AP; Reddy HS
    J Craniofac Surg; 2019; 30(8):e741-e743. PubMed ID: 31343589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Normative measurements of orbital structures by magnetic resonance imaging.
    Rana K; Juniat V; Rayan A; Patel S; Selva D
    Int Ophthalmol; 2022 Dec; 42(12):3869-3875. PubMed ID: 35831774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Normal measurement of orbital structures: implications for the assessment of Graves' ophthalmopathy.
    Sheikh M; Abalkhail S; Doi SA; Al-Shoumer KA
    Australas Radiol; 2007 Jun; 51(3):253-6. PubMed ID: 17504317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of human orbital lymphatics.
    Gausas RE; Gonnering RS; Lemke BN; Dortzbach RK; Sherman DD
    Ophthalmic Plast Reconstr Surg; 1999 Jul; 15(4):252-9. PubMed ID: 10432521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole-orbit-based multiparametric assessment of disease activity of thyroid eye disease on Dixon MRI.
    Xia D; Zhang H; Wang H; Jiang M; Tang Y; Li Y; Sun J; Song X; Zhou H
    Int Ophthalmol; 2024 May; 44(1):213. PubMed ID: 38700596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MR imaging of the inner ear and cerebellopontine angle: comparison of three-dimensional and two-dimensional sequences.
    Czerny C; Rand T; Gstoettner W; Woelfl G; Imhof H; Trattnig S
    AJR Am J Roentgenol; 1998 Mar; 170(3):791-6. PubMed ID: 9490977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI.
    Sengupta S; Smith DS; Smith AK; Welch EB; Smith SA
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4390–4398. PubMed ID: 28813574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T2-weighted fast spin-echo magnetic resonance imaging of extraocular muscles.
    Demer JL; Dushyanth A
    J AAPOS; 2011 Feb; 15(1):17-23. PubMed ID: 21397801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conspicuity of tumors of the head and neck on fat-suppressed MR images: T2-weighted fast-spin-echo versus contrast-enhanced T1-weighted conventional spin-echo sequences.
    Dubin MD; Teresi LM; Bradley WG; Jordan JE; Pema PJ; Goergen SK; Tam JK
    AJR Am J Roentgenol; 1995 May; 164(5):1213-21. PubMed ID: 7717234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-Related Changes in Tissue Value Properties in Children: Simultaneous Quantification of Relaxation Times and Proton Density Using Synthetic Magnetic Resonance Imaging.
    Lee SM; Choi YH; You SK; Lee WK; Kim WH; Kim HJ; Lee SY; Cheon H
    Invest Radiol; 2018 Apr; 53(4):236-245. PubMed ID: 29504952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic sensor data acquisition for three-dimensional ultrasound of the orbit.
    Delcker A; Martin T; Tegeler C
    Eye (Lond); 1998; 12 ( Pt 4)():725-8. PubMed ID: 9850273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement pattern of normal extraocular muscles in dynamic contrast-enhanced MR imaging with fat suppression.
    Taoka T; Iwasaki S; Uchida H; Fukusumi A; Kichikawa K; Nakagawa H; Takayama K; Sakamoto M; Ohishi H
    Acta Radiol; 2000 May; 41(3):211-6. PubMed ID: 10866073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The MRT of the orbit: the value of T1-weighted frequency-selective fat saturation at 1.0 and 1.5 tesla].
    Link TM; Reimer P; Rummeny EJ; Schuierer G; Grenzebach U; Peters PE
    Rofo; 1995 Nov; 163(5):406-10. PubMed ID: 8527754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orbital lymphatic vessels: immunohistochemical detection in the lacrimal gland, optic nerve, fat tissue, and extrinsic oculomotor muscles.
    Damasceno RWF; Barbosa JAP; Cortez LRC; Belfort R
    Arq Bras Oftalmol; 2021; 84(3):209-213. PubMed ID: 33567024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Analysis of Inflammation in Orbital Fat of Thyroid-associated Ophthalmopathy Using MRI Signal Intensity.
    Higashiyama T; Iwasa M; Ohji M
    Sci Rep; 2017 Dec; 7(1):16874. PubMed ID: 29203853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the orbit using contrast-enhanced radial 3D fat-suppressed T1 weighted gradient echo (Radial-VIBE) sequence.
    Bangiyev L; Raz E; Block TK; Hagiwara M; Wu X; Yu E; Fatterpekar GM
    Br J Radiol; 2015 Oct; 88(1054):20140863. PubMed ID: 26194589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative magnetic resonance imaging analysis of the lacrimal gland in sickle cell disease.
    Buch K; Watanabe M; Elias EJ; Liao JH; Jara H; Nadgir RN; Saito N; Steinberg MH; Sakai O
    J Comput Assist Tomogr; 2014; 38(5):674-80. PubMed ID: 24834886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative T
    Knight MJ; McCann B; Tsivos D; Couthard E; Kauppinen RA
    MAGMA; 2016 Dec; 29(6):833-842. PubMed ID: 27333937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orbital magnetic resonance imaging is useful in age-related distance esotropia.
    Gómez de Liaño Sanchez P; Olavarri González G; Merino Sanz P; Escribano Villafruela JC
    J Optom; 2018; 11(2):86-92. PubMed ID: 28601401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Orbital radiographic anatomy. Part 2. Orbital soft tissue contents].
    Yatsenko OY; Tyurin IE
    Vestn Rentgenol Radiol; 2016; 97(1):5-13. PubMed ID: 27192767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.