BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28437072)

  • 21. Subtle Structural Differences Affect the Inhibitory Potency of RGD-Containing Cyclic Peptide Inhibitors Targeting SPSB Proteins.
    Li K; Luo Y; Hu W; Yang J; Zhang D; Wei H; You T; Lin HS; Kuang Z
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis.
    Vijayasarathy M; Basheer SM; Franklin JB; Balaram P
    J Proteome Res; 2017 Feb; 16(2):763-772. PubMed ID: 28152596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selecting highly structure-specific antibodies using structured synthetic mimics of the cystine knot protein sclerostin.
    Back JW; Frisch C; Van Pee K; Boschert V; van Vught R; Puijk W; Mueller TD; Knappik A; Timmerman P
    Protein Eng Des Sel; 2012 May; 25(5):251-9. PubMed ID: 22454505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cosolvent-assisted oxidative folding of a bicyclic alpha-conotoxin ImI.
    Nielsen JS; Buczek P; Bulaj G
    J Pept Sci; 2004 May; 10(5):249-56. PubMed ID: 15160836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies to Enhance Metabolic Stabilities.
    Khatri B; Nuthakki VR; Chatterjee J
    Methods Mol Biol; 2019; 2001():17-40. PubMed ID: 31134565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.
    Stanger K; Maurer T; Kaluarachchi H; Coons M; Franke Y; Hannoush RN
    FEBS Lett; 2014 Nov; 588(23):4487-96. PubMed ID: 25448598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+ channel modulator.
    Eliseo T; Cicero DO; Romeo C; Schininà ME; Massilia GR; Polticelli F; Ascenzi P; Paci M
    Biopolymers; 2004 Jun; 74(3):189-98. PubMed ID: 15150794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.
    Reinwarth M; Glotzbach B; Tomaszowski M; Fabritz S; Avrutina O; Kolmar H
    Chembiochem; 2013 Jan; 14(1):137-46. PubMed ID: 23229141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus.
    Rajesh RP
    J Pept Sci; 2015 Jan; 21(1):29-39. PubMed ID: 25420928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII.
    Clark RJ; Fischer H; Dempster L; Daly NL; Rosengren KJ; Nevin ST; Meunier FA; Adams DJ; Craik DJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13767-72. PubMed ID: 16162671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides.
    Boulègue C; Milbradt AG; Renner C; Moroder L
    J Mol Biol; 2006 May; 358(3):846-56. PubMed ID: 16530224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrocyclic Modalities Combining Peptide Epitopes and Natural Product Fragments.
    Guéret SM; Thavam S; Carbajo RJ; Potowski M; Larsson N; Dahl G; Dellsén A; Grossmann TN; Plowright AT; Valeur E; Lemurell M; Waldmann H
    J Am Chem Soc; 2020 Mar; 142(10):4904-4915. PubMed ID: 32058716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of oxidative folding methods for cysteine-rich peptides: a study of conotoxins containing three disulfide bridges.
    Steiner AM; Bulaj G
    J Pept Sci; 2011 Jan; 17(1):1-7. PubMed ID: 20814907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 19F NMR as a probe of ligand interactions with the iNOS binding site of SPRY domain-containing SOCS box protein 2.
    Leung EW; Yagi H; Harjani JR; Mulcair MD; Scanlon MJ; Baell JB; Norton RS
    Chem Biol Drug Des; 2014 Nov; 84(5):616-25. PubMed ID: 24813479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide.
    Kwon S; Bosmans F; Kaas Q; Cheneval O; Conibear AC; Rosengren KJ; Wang CK; Schroeder CI; Craik DJ
    Biotechnol Bioeng; 2016 Oct; 113(10):2202-12. PubMed ID: 27093300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of tumor necrosis factor binding protein disulfide structure: deviation of the fourth domain structure from the TNFR/NGFR family cysteine-rich region signature.
    Jones MD; Hunt J; Liu JL; Patterson SD; Kohno T; Lu HS
    Biochemistry; 1997 Dec; 36(48):14914-23. PubMed ID: 9398215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding of conotoxins: formation of the native disulfide bridges during chemical synthesis and biosynthesis of Conus peptides.
    Bulaj G; Olivera BM
    Antioxid Redox Signal; 2008 Jan; 10(1):141-55. PubMed ID: 17961068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative Folding of Conopeptides Modified by Conus Protein Disulfide Isomerase.
    Wang L; Wang X; Ren Z; Tang W; Zou Q; Wang J; Chen S; Zhang H; Xu A
    Protein J; 2017 Oct; 36(5):407-416. PubMed ID: 28856545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.