These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28437095)

  • 1. Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities.
    Ramachandramoorthy R; Wang Y; Aghaei A; Richter G; Cai W; Espinosa HD
    ACS Nano; 2017 May; 11(5):4768-4776. PubMed ID: 28437095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension.
    Bernal RA; Aghaei A; Lee S; Ryu S; Sohn K; Huang J; Cai W; Espinosa H
    Nano Lett; 2015 Jan; 15(1):139-46. PubMed ID: 25279701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.
    Ramachandramoorthy R; Gao W; Bernal R; Espinosa H
    Nano Lett; 2016 Jan; 16(1):255-63. PubMed ID: 26540253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates.
    Wang F; Gao Y; Zhu T; Zhao J
    Nanoscale; 2011 Apr; 3(4):1624-31. PubMed ID: 21350764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation of Copper Nanowire under Coupled Tension-Torsion Loading.
    Lu H; Dong B; Zhang J; Lü C; Zhan H
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.
    Qin Q; Yin S; Cheng G; Li X; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2015 Jan; 6():5983. PubMed ID: 25585295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors.
    Mayousse C; Celle C; Moreau E; Mainguet JF; Carella A; Simonato JP
    Nanotechnology; 2013 May; 24(21):215501. PubMed ID: 23619480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.
    Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH
    Nat Commun; 2014; 5():3033. PubMed ID: 24398783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and optical properties of silver nanowires and silver-nanowire thin films.
    Luu QN; Doorn JM; Berry MT; Jiang C; Lin C; May PS
    J Colloid Interface Sci; 2011 Apr; 356(1):151-8. PubMed ID: 21276588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
    Tao W; Cao P; Park HS
    ACS Nano; 2018 May; 12(5):4984-4992. PubMed ID: 29708727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent fracture behavior of silver nanowires.
    Cao K; Han Y; Zhang H; Gao L; Yang H; Chen J; Li Y; Lu Y
    Nanotechnology; 2018 Jul; 29(29):295703. PubMed ID: 29697061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of a single gold nanowire.
    Chang M; Liu X; Chang FC; Deka JR
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5832-9. PubMed ID: 23882844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.
    Tao W; Cao P; Park HS
    Nano Lett; 2018 Feb; 18(2):1296-1304. PubMed ID: 29298076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation.
    Sun Z; Huang C; Guo J; Dong JT; Klie RF; Lauhon LJ; Seidman DN
    ACS Nano; 2019 Mar; 13(3):3730-3738. PubMed ID: 30807693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal breakdown of ZnTe nanowires.
    Davami K; Ghassemi HM; Yassar RS; Lee JS; Meyyappan M
    Chemphyschem; 2012 Jan; 13(1):347-52. PubMed ID: 22131283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.
    Hui Z; Liu Y; Guo W; Li L; Mu N; Jin C; Zhu Y; Peng P
    Nanotechnology; 2017 Jul; 28(28):285703. PubMed ID: 28574853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.
    Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW
    Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-dependent dual-mechanism-controlled failure modes in silver penta-twinned nanowires.
    Liang T; Zhou D; Wu Z; Shi P; Chen X
    Nanoscale; 2018 Nov; 10(44):20565-20577. PubMed ID: 30226511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.