These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28437104)
1. Redox-Active Macrocycles for Organic Rechargeable Batteries. Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104 [TBL] [Abstract][Full Text] [Related]
2. Chiral Redox-Active Isosceles Triangles. Nalluri SK; Liu Z; Wu Y; Hermann KR; Samanta A; Kim DJ; Krzyaniak MD; Wasielewski MR; Stoddart JF J Am Chem Soc; 2016 May; 138(18):5968-77. PubMed ID: 27070768 [TBL] [Abstract][Full Text] [Related]
3. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
4. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes? Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645 [TBL] [Abstract][Full Text] [Related]
5. Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. Nam KW; Kim H; Beldjoudi Y; Kwon TW; Kim DJ; Stoddart JF J Am Chem Soc; 2020 Feb; 142(5):2541-2548. PubMed ID: 31895548 [TBL] [Abstract][Full Text] [Related]
6. Application of Hydrazine-Embedded Heterocyclic Compounds to High Voltage Rechargeable Lithium Organic Batteries. Shimizu T; Yamamoto K; Pandit P; Yoshikawa H; Higashibayashi S Sci Rep; 2018 Jan; 8(1):579. PubMed ID: 29330491 [TBL] [Abstract][Full Text] [Related]
7. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries. Min DJ; Lee K; Park SY; Kwon JE ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008 [TBL] [Abstract][Full Text] [Related]
8. Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage. Kim J; Ko S; Noh C; Kim H; Lee S; Kim D; Park H; Kwon G; Son G; Ko JW; Jung Y; Lee D; Park CB; Kang K Angew Chem Int Ed Engl; 2019 Nov; 58(47):16764-16769. PubMed ID: 31339216 [TBL] [Abstract][Full Text] [Related]
9. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene. Yu YX ACS Appl Mater Interfaces; 2014 Sep; 6(18):16267-75. PubMed ID: 25216389 [TBL] [Abstract][Full Text] [Related]
10. Organic rechargeable batteries with tailored voltage and cycle performance. Nishida S; Yamamoto Y; Takui T; Morita Y ChemSusChem; 2013 May; 6(5):794-7. PubMed ID: 23505144 [TBL] [Abstract][Full Text] [Related]
11. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries. Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912 [TBL] [Abstract][Full Text] [Related]
12. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries. Miao L; Liu L; Zhang K; Chen J ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154 [TBL] [Abstract][Full Text] [Related]
13. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries. Li L; Gong HX; Chen DY; Lin MJ Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233 [TBL] [Abstract][Full Text] [Related]
14. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634 [TBL] [Abstract][Full Text] [Related]
15. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State. Mohan Nalluri SK; Zhou J; Cheng T; Liu Z; Nguyen MT; Chen T; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR; Stoddart JF J Am Chem Soc; 2019 Jan; 141(3):1290-1303. PubMed ID: 30537816 [TBL] [Abstract][Full Text] [Related]
16. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries. Lüder J; Manzhos S Front Chem; 2020; 8():83. PubMed ID: 32154214 [TBL] [Abstract][Full Text] [Related]
17. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin. Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684 [TBL] [Abstract][Full Text] [Related]
18. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte. Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043 [TBL] [Abstract][Full Text] [Related]
19. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries. Park MS; Park I; Kang YS; Im D; Doo SG Phys Chem Chem Phys; 2016 Sep; 18(38):26807-26815. PubMed ID: 27711632 [TBL] [Abstract][Full Text] [Related]
20. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Wang S; Wang Q; Shao P; Han Y; Gao X; Ma L; Yuan S; Ma X; Zhou J; Feng X; Wang B J Am Chem Soc; 2017 Mar; 139(12):4258-4261. PubMed ID: 28316238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]