BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28437104)

  • 21. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of Transition-Metal Redox by Interstitial Water in Hexacyanometalate Electrodes for Sodium-Ion Batteries.
    Wu J; Song J; Dai K; Zhuo Z; Wray LA; Liu G; Shen ZX; Zeng R; Lu Y; Yang W
    J Am Chem Soc; 2017 Dec; 139(50):18358-18364. PubMed ID: 29169239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superposed Redox Chemistry of Fused Carbon Rings in Cyclooctatetraene-Based Organic Molecules for High-Voltage and High-Capacity Cathodes.
    Zhao X; Qiu W; Ma C; Zhao Y; Wang K; Zhang W; Kang L; Liu J
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2496-2503. PubMed ID: 29285932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Cyclooctatetraene-Based Aliphatic Polymers as Battery Materials: Synthesis, Electrochemical, and Thermal Characterization Supported by DFT Calculations.
    Speer ME; Sterzenbach C; Esser B
    Chempluschem; 2017 Oct; 82(10):1274-1281. PubMed ID: 31957995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid system for rechargeable magnesium battery with high energy density.
    Chang Z; Yang Y; Wang X; Li M; Fu Z; Wu Y; Holze R
    Sci Rep; 2015 Jul; 5():11931. PubMed ID: 26173624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fused Tetrathiafulvalene and Benzoquinone Triads: Organic Positive-Electrode Materials Based on a Dual Redox System.
    Misaki Y; Noda S; Kato M; Yamauchi T; Oshima T; Yoshimura A; Shirahata T; Yao M
    ChemSusChem; 2020 May; 13(9):2312-2320. PubMed ID: 32096607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ultrafast rechargeable aluminium-ion battery.
    Lin MC; Gong M; Lu B; Wu Y; Wang DY; Guan M; Angell M; Chen C; Yang J; Hwang BJ; Dai H
    Nature; 2015 Apr; 520(7547):325-8. PubMed ID: 25849777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries.
    Guo W; Wawrzyniakowski ZD; Cerda MM; Bhargav A; Pluth MD; Ma Y; Fu Y
    Chemistry; 2017 Dec; 23(67):16941-16947. PubMed ID: 28861926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viologen Derivatives Extended with Aromatic Rings Acting as Negative Electrode Materials for Use in Rechargeable Molecular Ion Batteries.
    Kato M; Sano H; Kiyobayashi T; Yao M
    ChemSusChem; 2020 May; 13(9):2379-2385. PubMed ID: 32037681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of Radical Intermediates in Rechargeable Organic Batteries.
    Gu S; Chen J; Hussain I; Wang Z; Chen X; Ahmad M; Feng SP; Lu Z; Zhang K
    Adv Mater; 2024 Apr; 36(17):e2306491. PubMed ID: 37533193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel pyromellitic diimide-based macrocycle with a linear pi-electronic system and bis(phenylethynyl)pyromellitic diimide: syntheses, structures, photophysical properties, and redox characteristics.
    Kato S; Nonaka Y; Shimasaki T; Goto K; Shinmyozu T
    J Org Chem; 2008 Jun; 73(11):4063-75. PubMed ID: 18429631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical lithiation-induced polymorphism of anthraquinone derivatives observed by operando X-ray diffraction.
    Silberstein KE; Pastore JP; Zhou W; Potash RA; Hernández-Burgos K; Lobkovsky EB; Abruña HD
    Phys Chem Chem Phys; 2015 Nov; 17(41):27665-71. PubMed ID: 26427626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrocyclization in the Design of Organic n-Type Electronic Materials.
    Ball M; Zhong Y; Fowler B; Zhang B; Li P; Etkin G; Paley DW; Decatur J; Dalsania AK; Li H; Xiao S; Ng F; Steigerwald ML; Nuckolls C
    J Am Chem Soc; 2016 Oct; 138(39):12861-12867. PubMed ID: 27666433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries.
    Miao L; Liu L; Shang Z; Li Y; Lu Y; Cheng F; Chen J
    Phys Chem Chem Phys; 2018 May; 20(19):13478-13484. PubMed ID: 29726879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.