These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 284374)

  • 1. Subnanosecond motions of tryptophan residues in proteins.
    Munro I; Pecht I; Stryer L
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):56-60. PubMed ID: 284374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid motions in protein molecules.
    Stryer L
    Biochem Soc Symp; 1981; (46):39-55. PubMed ID: 7039627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59).
    Vincent M; Brochon JC; Merola F; Jordi W; Gallay J
    Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. A steady-state and time-resolved anisotropy study.
    Ludescher RD; Johnson ID; Volwerk JJ; de Haas GH; Jost PC; Hudson BS
    Biochemistry; 1988 Aug; 27(17):6618-28. PubMed ID: 3219357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.
    Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ
    Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosecond dynamics of tryptophans in different conformational states of apomyoglobin proteins.
    Tcherkasskaya O; Ptitsyn OB; Knutson JR
    Biochemistry; 2000 Feb; 39(7):1879-89. PubMed ID: 10677239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease.
    Demchenko AP; Gryczynski I; Gryczynski Z; Wiczk W; Malak H; Fishman M
    Biophys Chem; 1993 Nov; 48(1):39-48. PubMed ID: 8257766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization.
    Grinvald A; Schlessinger J; Pecht I; Steinberg IZ
    Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between internal motion and emission kinetics of tryptophan residues in proteins.
    Kouyama T; Kinosita K; Ikegami A
    Eur J Biochem; 1989 Jul; 182(3):517-21. PubMed ID: 2753033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics.
    Vos K; van Hoek A; Visser AJ
    Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24).
    Ross JB; Rousslang KW; Brand L
    Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational freedom of tryptophan residues in proteins and peptides.
    Lakowicz JR; Maliwal BP; Cherek H; Balter A
    Biochemistry; 1983 Apr; 22(8):1741-52. PubMed ID: 6849881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
    Kemple MD; Yuan P; Nollet KE; Fuchs JA; Silva N; Prendergast FG
    Biophys J; 1994 Jun; 66(6):2111-26. PubMed ID: 8075345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins.
    Petrich JW; Longworth JW; Fleming GR
    Biochemistry; 1987 May; 26(10):2711-22. PubMed ID: 3111523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backbone dynamics of Tet repressor alpha8intersectionalpha9 loop.
    Vergani B; Kintrup M; Hillen W; Lami H; Piémont E; Bombarda E; Alberti P; Doglia SM; Chabbert M
    Biochemistry; 2000 Mar; 39(10):2759-68. PubMed ID: 10704228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence.
    Hansen JE; Steel DG; Gafni A
    Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.