BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28437628)

  • 21. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment.
    Young EW
    Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent research advances of the biomimetic tumor microenvironment and regulatory factors on microfluidic devices: A systematic review.
    Xu H; Cheng C; Le W
    Electrophoresis; 2022 Apr; 43(7-8):839-847. PubMed ID: 35179796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomaterials and Microfluidics for Drug Discovery and Development.
    Carvalho MR; Truckenmuller R; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():121-135. PubMed ID: 32285368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering biomolecular microenvironments for cell instructive biomaterials.
    Custódio CA; Reis RL; Mano JF
    Adv Healthc Mater; 2014 Jun; 3(6):797-810. PubMed ID: 24464880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms involved in breast cancer liver metastasis.
    Ma R; Feng Y; Lin S; Chen J; Lin H; Liang X; Zheng H; Cai X
    J Transl Med; 2015 Feb; 13():64. PubMed ID: 25885919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of suberoylanilide hydroxamic acid (SAHA) on breast cancer cells within a tumor-stroma microfluidic model.
    Peela N; Barrientos ES; Truong D; Mouneimne G; Nikkhah M
    Integr Biol (Camb); 2017 Dec; 9(12):988-999. PubMed ID: 29188843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the molecular basis of breast cancer metastasis with mouse models.
    Vernon AE; Bakewell SJ; Chodosh LA
    Rev Endocr Metab Disord; 2007 Sep; 8(3):199-213. PubMed ID: 17657606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic platform for modeling metastatic cancer cell matrix invasion.
    Blaha L; Zhang C; Cabodi M; Wong JY
    Biofabrication; 2017 Sep; 9(4):045001. PubMed ID: 28812983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid tethering of breast tumor cells enables real-time imaging of free-floating cell dynamics and drug response.
    Chakrabarti KR; Andorko JI; Whipple RA; Zhang P; Sooklal EL; Martin SS; Jewell CM
    Oncotarget; 2016 Mar; 7(9):10486-97. PubMed ID: 26871289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intratumoral phenotypic heterogeneity as an encourager of cancer invasion.
    Shin Y; Han S; Chung E; Chung S
    Integr Biol (Camb); 2014 Jul; 6(7):654-61. PubMed ID: 24844199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems.
    Zheng F; Fu F; Cheng Y; Wang C; Zhao Y; Gu Z
    Small; 2016 May; 12(17):2253-82. PubMed ID: 26901595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.
    Katt ME; Placone AL; Wong AD; Xu ZS; Searson PC
    Front Bioeng Biotechnol; 2016; 4():12. PubMed ID: 26904541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered Models of Metastasis with Application to Study Cancer Biomechanics.
    Chen MB; Kamm RD; Moeendarbary E
    Adv Exp Med Biol; 2018; 1092():189-207. PubMed ID: 30368754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metastasis suppressors and their roles in breast carcinoma.
    Vaidya KS; Welch DR
    J Mammary Gland Biol Neoplasia; 2007 Sep; 12(2-3):175-90. PubMed ID: 17587154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Decade of Experience in Developing Preclinical Models of Advanced- or Early-Stage Spontaneous Metastasis to Study Antiangiogenic Drugs, Metronomic Chemotherapy, and the Tumor Microenvironment.
    Kerbel RS
    Cancer J; 2015; 21(4):274-83. PubMed ID: 26222079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.
    Futakuchi M; Fukamachi K; Suzui M
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):206-211. PubMed ID: 26656603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.