These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28437628)

  • 41. Vascularized Biomaterials to Study Cancer Metastasis.
    Bittner KR; Jiménez JM; Peyton SR
    Adv Healthc Mater; 2020 Apr; 9(8):e1901459. PubMed ID: 31977160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomaterials for Mimicking and Modelling Tumor Microenvironment.
    Das R; Fernandez JG
    Adv Exp Med Biol; 2022; 1379():139-170. PubMed ID: 35760991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A microfluidic platform for drug screening in a 3D cancer microenvironment.
    Pandya HJ; Dhingra K; Prabhakar D; Chandrasekar V; Natarajan SK; Vasan AS; Kulkarni A; Shafiee H
    Biosens Bioelectron; 2017 Aug; 94():632-642. PubMed ID: 28371753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis.
    Xu K; Tian X; Oh SY; Movassaghi M; Naber SP; Kuperwasser C; Buchsbaum RJ
    Breast Cancer Res; 2016 Jan; 18(1):14. PubMed ID: 26821678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.
    Albini A; Bruno A; Gallo C; Pajardi G; Noonan DM; Dallaglio K
    Connect Tissue Res; 2015; 56(5):414-25. PubMed ID: 26291921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis.
    Jones LM; Broz ML; Ranger JJ; Ozcelik J; Ahn R; Zuo D; Ursini-Siegel J; Hallett MT; Krummel M; Muller WJ
    Cancer Res; 2016 Mar; 76(6):1416-28. PubMed ID: 26719528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypoxic pathobiology of breast cancer metastasis.
    Schito L; Rey S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):239-245. PubMed ID: 28526262
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How smart do biomaterials need to be? A translational science and clinical point of view.
    Holzapfel BM; Reichert JC; Schantz JT; Gbureck U; Rackwitz L; Nöth U; Jakob F; Rudert M; Groll J; Hutmacher DW
    Adv Drug Deliv Rev; 2013 Apr; 65(4):581-603. PubMed ID: 22820527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Animal models for breast cancer metastasis to bone: opportunities and limitations.
    Horas K; Zheng Y; Zhou H; Seibel MJ
    Cancer Invest; 2015; 33(9):459-68. PubMed ID: 26305725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.
    Jeon JS; Bersini S; Gilardi M; Dubini G; Charest JL; Moretti M; Kamm RD
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):214-9. PubMed ID: 25524628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
    Perestrelo AR; Águas AC; Rainer A; Forte G
    Sensors (Basel); 2015 Dec; 15(12):31142-70. PubMed ID: 26690442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia-mediated metastasis.
    Chang J; Erler J
    Adv Exp Med Biol; 2014; 772():55-81. PubMed ID: 24272354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient.
    Caballero D; Kaushik S; Correlo VM; Oliveira JM; Reis RL; Kundu SC
    Biomaterials; 2017 Dec; 149():98-115. PubMed ID: 29024838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Addressing Patient Specificity in the Engineering of Tumor Models.
    Bray LJ; Hutmacher DW; Bock N
    Front Bioeng Biotechnol; 2019; 7():217. PubMed ID: 31572718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular matrix components in breast cancer progression and metastasis.
    Oskarsson T
    Breast; 2013 Aug; 22 Suppl 2():S66-72. PubMed ID: 24074795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.
    Zhu W; Holmes B; Glazer RI; Zhang LG
    Nanomedicine; 2016 Jan; 12(1):69-79. PubMed ID: 26472048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.
    Prestwich GD
    Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breast cancer metastasis.
    Scully OJ; Bay BH; Yip G; Yu Y
    Cancer Genomics Proteomics; 2012; 9(5):311-20. PubMed ID: 22990110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.