These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 28437683)

  • 1. PINK1 and Parkin: emerging themes in mitochondrial homeostasis.
    McWilliams TG; Muqit MM
    Curr Opin Cell Biol; 2017 Apr; 45():83-91. PubMed ID: 28437683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.
    Matsuda N
    J Biochem; 2016 Apr; 159(4):379-85. PubMed ID: 26839319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy.
    Wang L; Cho YL; Tang Y; Wang J; Park JE; Wu Y; Wang C; Tong Y; Chawla R; Zhang J; Shi Y; Deng S; Lu G; Wu Y; Tan HW; Pawijit P; Lim GG; Chan HY; Zhang J; Fang L; Yu H; Liou YC; Karthik M; Bay BH; Lim KL; Sze SK; Yap CT; Shen HM
    Cell Res; 2018 Aug; 28(8):787-802. PubMed ID: 29934616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway.
    Szargel R; Shani V; Abd Elghani F; Mekies LN; Liani E; Rott R; Engelender S
    Hum Mol Genet; 2016 Aug; 25(16):3476-3490. PubMed ID: 27334109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
    Bingol B; Sheng M
    Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson's Disease and Its Substrate-Involved Mouse Experimental Models.
    Torii S; Kasai S; Yoshida T; Yasumoto KI; Shimizu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
    Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PINK1/Parkin-mediated mitophagy in mammalian cells.
    Eiyama A; Okamoto K
    Curr Opin Cell Biol; 2015 Apr; 33():95-101. PubMed ID: 25697963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology?
    Truban D; Hou X; Caulfield TR; Fiesel FC; Springer W
    J Parkinsons Dis; 2017; 7(1):13-29. PubMed ID: 27911343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation by mitophagy.
    Hattori N; Saiki S; Imai Y
    Int J Biochem Cell Biol; 2014 Aug; 53():147-50. PubMed ID: 24842103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease.
    Kazlauskaite A; Muqit MM
    FEBS J; 2015 Jan; 282(2):215-23. PubMed ID: 25345844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy.
    Geisler S; Vollmer S; Golombek S; Kahle PJ
    J Cell Sci; 2014 Aug; 127(Pt 15):3280-93. PubMed ID: 24906799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counteracting PINK/Parkin Deficiency in the Activation of Mitophagy: A Potential Therapeutic Intervention for Parkinson's Disease.
    Nardin A; Schrepfer E; Ziviani E
    Curr Neuropharmacol; 2016; 14(3):250-9. PubMed ID: 26517048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import.
    Sekine S
    J Biochem; 2020 Mar; 167(3):217-224. PubMed ID: 31504668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PTEN-induced kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality control pathway linked to Parkinson's disease.
    Agarwal S; Muqit MMK
    Curr Opin Neurobiol; 2022 Feb; 72():111-119. PubMed ID: 34717133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility.
    Shlevkov E; Kramer T; Schapansky J; LaVoie MJ; Schwarz TL
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6097-E6106. PubMed ID: 27679849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.