These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28437695)
1. Fe(III)-promoted transformation of β-lactam antibiotics: Hydrolysis vs oxidation. Chen J; Wang Y; Qian Y; Huang T J Hazard Mater; 2017 Aug; 335():117-124. PubMed ID: 28437695 [TBL] [Abstract][Full Text] [Related]
2. Multiple Roles of Cu(II) in Catalyzing Hydrolysis and Oxidation of β-Lactam Antibiotics. Chen J; Sun P; Zhang Y; Huang CH Environ Sci Technol; 2016 Nov; 50(22):12156-12165. PubMed ID: 27934235 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Wang H; Yao H; Sun P; Pei J; Li D; Huang CH Chemosphere; 2015 Jan; 119():1255-1261. PubMed ID: 25460769 [TBL] [Abstract][Full Text] [Related]
4. Cu(II)-catalyzed degradation of ampicillin: effect of pH and dissolved oxygen. Guo Y; Tsang DCW; Zhang X; Yang X Environ Sci Pollut Res Int; 2018 Feb; 25(5):4279-4288. PubMed ID: 29178018 [TBL] [Abstract][Full Text] [Related]
5. Degradation of β-lactam antibiotics by Fe(III)/HSO Chen Z; Cai H; Huang F; Wang Z; Chen Y; Liu Z; Xie P Environ Res; 2024 Oct; 259():119577. PubMed ID: 38986801 [TBL] [Abstract][Full Text] [Related]
6. Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation. Wang H; Yao H; Sun P; Li D; Huang CH Environ Sci Technol; 2016 Jan; 50(1):145-53. PubMed ID: 26618388 [TBL] [Abstract][Full Text] [Related]
7. Reevaluation for UV photolysis of Fe(III) inducing tetracycline abatement: Overlooked significance of complexation-assistance in environmental fates of antibiotics. Cheng X; Wang J; Yang B; Wang C; Chu W; Guo H J Hazard Mater; 2023 Sep; 458():131909. PubMed ID: 37459759 [TBL] [Abstract][Full Text] [Related]
8. Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products. Karlesa A; De Vera GA; Dodd MC; Park J; Espino MP; Lee Y Environ Sci Technol; 2014 Sep; 48(17):10380-9. PubMed ID: 25073066 [TBL] [Abstract][Full Text] [Related]
9. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts. Hanna K; Kone T; Ruby C Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299 [TBL] [Abstract][Full Text] [Related]
10. Cu(II)-catalyzed transformation of benzylpenicillin revisited: the overlooked oxidation. Chen J; Sun P; Zhou X; Zhang Y; Huang CH Environ Sci Technol; 2015 Apr; 49(7):4218-25. PubMed ID: 25759948 [TBL] [Abstract][Full Text] [Related]
11. Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Giraldo-Aguirre AL; Serna-Galvis EA; Erazo-Erazo ED; Silva-Agredo J; Giraldo-Ospina H; Flórez-Acosta OA; Torres-Palma RA Environ Sci Pollut Res Int; 2018 Jul; 25(21):20293-20303. PubMed ID: 28160176 [TBL] [Abstract][Full Text] [Related]
12. Evanescent Wave Optical Fiber Sensors Using Enzymatic Hydrolysis on Nanostructured Polyaniline for Detection of β-Lactam Antibiotics in Food and Environment. Nag P; Sadani K; Mohapatra S; Mukherji S; Mukherji S Anal Chem; 2021 Feb; 93(4):2299-2308. PubMed ID: 33411532 [TBL] [Abstract][Full Text] [Related]
13. Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation. He X; Mezyk SP; Michael I; Fatta-Kassinos D; Dionysiou DD J Hazard Mater; 2014 Aug; 279():375-83. PubMed ID: 25086235 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Zhang K; Zhou X; Du P; Zhang T; Cai M; Sun P; Huang CH Water Res; 2017 Oct; 123():153-161. PubMed ID: 28662397 [TBL] [Abstract][Full Text] [Related]
15. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Mitchell SM; Ullman JL; Teel AL; Watts RJ Sci Total Environ; 2014 Jan; 466-467():547-55. PubMed ID: 23948499 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Weng X; Cai W; Lan R; Sun Q; Chen Z Environ Pollut; 2018 May; 236():562-569. PubMed ID: 29428710 [TBL] [Abstract][Full Text] [Related]
17. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: a quantum chemical study on cephradine. Zhang H; Xie H; Chen J; Zhang S Environ Sci Technol; 2015 Feb; 49(3):1552-8. PubMed ID: 25590945 [TBL] [Abstract][Full Text] [Related]
18. Quantum chemical prediction of effects of temperature on hydrolysis rate of penicillin under weakly acidic condition. Zhang H; Bai J; Xue W; Xue Y; Zhang Y Sci Total Environ; 2022 Feb; 806(Pt 1):150509. PubMed ID: 34582861 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water. Rickman KA; Mezyk SP Chemosphere; 2010 Sep; 81(3):359-65. PubMed ID: 20701949 [TBL] [Abstract][Full Text] [Related]
20. Origins of selective differential oxidation of β-lactam antibiotics with different structure in an efficient visible-light driving mesoporous g-C Dou M; Wang J; Ma Z; Gao B; Huang X J Hazard Mater; 2022 Mar; 426():128111. PubMed ID: 34954433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]