BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28437701)

  • 1. A high performance and highly-controllable core-shell imprinted sensor based on the surface-enhanced Raman scattering for detection of R6G in water.
    Li H; Jiang J; Wang Z; Wang X; Liu X; Yan Y; Li C
    J Colloid Interface Sci; 2017 Sep; 501():86-93. PubMed ID: 28437701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of a self-cleanable molecularly imprinted sensor based on surface-enhanced Raman spectroscopy for selective detection of R6G.
    Li H; Wang Z; Wang X; Jiang J; Xu Y; Liu X; Yan Y; Li C
    Anal Bioanal Chem; 2017 Jul; 409(19):4627-4635. PubMed ID: 28593373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-sensitive imprinted membranes based on surface-enhanced Raman scattering for selective detection of antibiotics in water.
    Wang M; Wang Y; Qiao Y; Wei M; Gao L; Wang L; Yan Y; Li H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117116. PubMed ID: 31181508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-responsive molecularly imprinted sensor based on the surface-enhanced Raman scattering for selective detection of R6G in the water.
    Li H; Wang X; Wang Z; Jiang J; Wei M; Zheng J; Yan Y; Li C
    Dalton Trans; 2017 Aug; 46(34):11282-11290. PubMed ID: 28805859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol.
    Wei X; Zhou Z; Hao T; Li H; Xu Y; Lu K; Wu Y; Dai J; Pan J; Yan Y
    Anal Chim Acta; 2015 Apr; 870():83-91. PubMed ID: 25819790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres.
    Guo Y; Kang L; Chen S; Li X
    Phys Chem Chem Phys; 2015 Sep; 17(33):21343-7. PubMed ID: 25759203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ; Li DW; Qu LL; Long YT
    Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2,6-dichlorophenol detection based on surface-enhanced Raman scattering.
    Li H; Wang Y; Li Y; Qiao Y; Liu L; Wang Q; Che G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117784. PubMed ID: 31740121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO
    Li H; Wang X; Wang Z; Wang Y; Dai J; Gao L; Wei M; Yan Y; Li C
    Mikrochim Acta; 2018 Feb; 185(3):193. PubMed ID: 29594666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of SiO
    Guo H; Ren X; Song X; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122365. PubMed ID: 36652805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application.
    Liao W; Wang Q; Hao J; Huang L; Zheng L; Yin Z; Chen Y; Zhou Y; Liu K
    Mikrochim Acta; 2023 Jan; 190(2):50. PubMed ID: 36629926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing.
    Jiang Y; Carboni D; Malfatti L; Innocenzi P
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Characterization of a Highly-Sensitive Surface-Enhanced Raman Scattering Nanosensor for Detecting Glucose in Urine.
    Lu Y; Zhou T; You R; Wu Y; Shen H; Feng S; Su J
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30127278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering.
    Wang W; Li Z; Gu B; Zhang Z; Xu H
    ACS Nano; 2009 Nov; 3(11):3493-6. PubMed ID: 19886639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dummy molecular imprinted polymers coated with silver microspheres via surface enhanced Raman scattering for sensitive detection of benzimidazole.
    Ren X; Feng X; Jin M; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119321. PubMed ID: 33360208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.
    Xie J; Xie J; Deng J; Fang X; Zhao H; Qian D; Wang H
    J Sep Sci; 2016 Jun; 39(12):2422-30. PubMed ID: 27120290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering.
    Zhou J; Sheth S; Zhou H; Song Q
    Talanta; 2020 May; 211():120745. PubMed ID: 32070625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag@Fe₃O₄ Core-Shell Surface-Enhanced Raman Scattering Probe for Trace Arsenate Detection.
    Sun H; Zeng S; Shang Y; He Q
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1097-1102. PubMed ID: 29448539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile seed growth method to prepare stable Ag@ZrO
    Zhou Y; Liang P; Zhang D; Tang L; Dong Q; Jin S; Ni D; Yu Z; Ye J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117676. PubMed ID: 31767414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A.
    Ren X; Cheshari EC; Qi J; Li X
    Mikrochim Acta; 2018 Apr; 185(4):242. PubMed ID: 29610992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.