BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28437742)

  • 21. [Stereum hirsutum (Wild) Pers. action in dye degradation].
    Mouso N; Diorio L; Forchiassin F
    Rev Iberoam Micol; 2007 Dec; 24(4):294-8. PubMed ID: 18095763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes.
    Chmelová D; Ondrejovič M
    J Basic Microbiol; 2016 Nov; 56(11):1173-1182. PubMed ID: 27577103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.
    Lu R; Ma L; He F; Yu D; Fan R; Zhang Y; Long Z; Zhang X; Yang Y
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):381-90. PubMed ID: 26684007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dye-decolorization of a newly isolated strain Bacillus amyloliquefaciens W36.
    Liu Y; Shao Z; Reng X; Zhou J; Qin W
    World J Microbiol Biotechnol; 2021 Jan; 37(1):8. PubMed ID: 33392823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects.
    Sudarshan S; Harikrishnan S; RathiBhuvaneswari G; Alamelu V; Aanand S; Rajasekar A; Govarthanan M
    J Appl Microbiol; 2023 Feb; 134(2):. PubMed ID: 36724285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of dye decolorization using heterogeneous catalytic system with immobilized
    Harish BS; Thayumanavan T; Subashkumar R; Gopal K; Kowsik Raj N
    Prep Biochem Biotechnol; 2024 May; 54(5):691-699. PubMed ID: 37909491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decolorization and Detoxification of Synthetic Dyes by Mexican Strains of
    Levin LN; Hernández-Luna CE; Niño-Medina G; García-Rodríguez JP; López-Sadin I; Méndez-Zamora G; Gutiérrez-Soto G
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31757086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds.
    Chandanshive V; Kadam S; Rane N; Jeon BH; Jadhav J; Govindwar S
    Chemosphere; 2020 Aug; 252():126513. PubMed ID: 32203784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-dependent and whole-cell catalytic decolorization of dyes using recombinant dye-decolorizing peroxidase from Rhodococcus jostii.
    Duan X; Pi Q; Tang L
    Bioprocess Biosyst Eng; 2024 Mar; 47(3):355-366. PubMed ID: 38326513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigations on inhibitory effects of nickel and cobalt salts on the decolorization of textile dyes by the white rot fungus Phanerochaete velutina.
    Zafiu C; Part F; Ehmoser EK; Kähkönen MA
    Ecotoxicol Environ Saf; 2021 Jun; 215():112093. PubMed ID: 33721667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccase producing bacteria influenced the high decolorization of textile azo dyes with advanced study.
    Khaled JM; Alyahya SA; Govindan R; Chelliah CK; Maruthupandy M; Alharbi NS; Kadaikunnan S; Issac R; Murugan S; Li WJ
    Environ Res; 2022 May; 207():112211. PubMed ID: 34656634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.
    Sani RK; Azmi W; Banerjee UC
    Folia Microbiol (Praha); 1998; 43(1):85-8. PubMed ID: 9616055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of extracellular H2O2 production on decolorization ability in fungi.
    Eichlerová I; Homolka L; Lisá L; Nerud F
    J Basic Microbiol; 2006; 46(6):449-55. PubMed ID: 17139610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes.
    Giap VD; Duc HT; Huong PTM; Hanh DT; Nghi DH; Duy VD; Quynh DT
    J Gen Appl Microbiol; 2023 Mar; 68(6):262-269. PubMed ID: 35781262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03.
    Paz A; Costa-Trigo I; Oliveira RPS; Domínguez JM
    Curr Microbiol; 2020 May; 77(5):702-709. PubMed ID: 31894375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater.
    Guan ZB; Shui Y; Song CM; Zhang N; Cai YJ; Liao XR
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9515-23. PubMed ID: 25847445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963.
    Pan H; Xu X; Wen Z; Kang Y; Wang X; Ren Y; Huang D
    Bioengineered; 2017 Sep; 8(5):630-641. PubMed ID: 28272975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.
    Khandare RV; Govindwar SP
    Biotechnol Adv; 2015 Dec; 33(8):1697-714. PubMed ID: 26386310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel and highly active recombinant spore-coat bacterial laccase, able to rapidly biodecolorize azo, triarylmethane and anthraquinonic dyestuffs.
    Espina G; Cáceres-Moreno P; Mejías-Navarrete G; Ji M; Sun J; Blamey JM
    Int J Biol Macromol; 2021 Feb; 170():298-306. PubMed ID: 33347931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.