These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28437760)

  • 1. The effects of object height and visual information on the control of obstacle crossing during locomotion in healthy older adults.
    Kunimune S; Okada S
    Gait Posture; 2017 Jun; 55():126-130. PubMed ID: 28437760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of vision and its age-related changes to postural stability in obstacle crossing during locomotion.
    Kunimune S; Okada S
    Gait Posture; 2019 May; 70():284-288. PubMed ID: 30925352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex Differences in the Visuomotor Control of Obstacle Crossing When Walking Are Not Age Related.
    Kunimune S; Okada S
    Percept Mot Skills; 2022 Jun; 129(3):362-377. PubMed ID: 35369823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does visual manipulation affect obstacle avoidance strategies used by athletes?
    Bijman MP; Fisher JJ; Vallis LA
    J Sports Sci; 2016; 34(10):915-22. PubMed ID: 26291383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age.
    Muir BC; Haddad JM; Heijnen MJ; Rietdyk S
    Gait Posture; 2015 Jan; 41(1):233-9. PubMed ID: 25455212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distracting visuospatial attention while approaching an obstacle reduces the toe-obstacle clearance.
    Lo OY; van Donkelaar P; Chou LS
    Exp Brain Res; 2015 Apr; 233(4):1137-44. PubMed ID: 25567089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of an unexpected perturbation on adaptive gait behavior.
    Rhea CK; Rietdyk S
    Gait Posture; 2011 Jul; 34(3):439-41. PubMed ID: 21764314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases.
    Muir BC; Haddad JM; van Emmerik REA; Rietdyk S
    Gait Posture; 2019 May; 70():254-259. PubMed ID: 30909004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedforward control in human locomotion during avoidance of obstacles that change size.
    Santos LC; Moraes R; Patla AE
    Motor Control; 2010 Oct; 14(4):424-39. PubMed ID: 21051786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where and when do we look as we approach and step over an obstacle in the travel path?
    Patla AE; Vickers JN
    Neuroreport; 1997 Dec; 8(17):3661-5. PubMed ID: 9427347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.