These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28437905)

  • 21. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.
    Wang T; Zhang C; Aleksov A; Salama I; Kar A
    Appl Opt; 2017 Jan; 56(3):688-694. PubMed ID: 28157931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo.
    Masters B; So P
    Opt Express; 2001 Jan; 8(1):2-10. PubMed ID: 19417779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doppler-free, multiwavelength acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information processor.
    Kim S; Mcleod RR; Saffman M; Wagner KH
    Appl Opt; 2008 Apr; 47(11):1816-31. PubMed ID: 18404181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope.
    Hu Q; Zhou Z; Lv X; Zeng S
    Opt Lett; 2016 Jan; 41(2):207-10. PubMed ID: 26766675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase.
    Graham DJ; Tseng SF; Hsieh JT; Chen DJ; Alexandrakis G
    J Fluoresc; 2015 Nov; 25(6):1775-85. PubMed ID: 26411799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors.
    Yan W; Peng X; Qi J; Gao J; Fan S; Wang Q; Qu J; Niu H
    J Biomed Opt; 2014; 19(11):116004. PubMed ID: 25375349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-speed two-photon calcium imaging of neuronal population activity using acousto-optic deflectors.
    Grewe BF; Helmchen F
    Cold Spring Harb Protoc; 2014 Jun; 2014(6):618-29. PubMed ID: 24890212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two synchronized modes of ultrashort optical pulses in a two-beam pumped Ti:sapphire laser.
    Zhu C; Zhang G; Xue B; Zhai X
    Appl Opt; 2014 Sep; 53(27):6162-7. PubMed ID: 25322092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-photon Excitation Microscopy and Confocal Microscopy Imaging of In Vivo Human Skin: A Comparison.
    Masters BR; So PT
    Microsc Microanal; 1999 Jul; 5(4):282-289. PubMed ID: 10421812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional spatiotemporal focusing of femtosecond pulses and its applications in microscopy.
    Song Q; Nakamura A; Hirosawa K; Isobe K; Midorikawa K; Kannari F
    Rev Sci Instrum; 2015 Aug; 86(8):083701. PubMed ID: 26329197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removing crosstalk signals in neuron activity by time multiplexed excitations in a two-photon all-optical physiology system.
    Liu C; Hao Y; Lei B; Zhong Y; Kong L
    Biomed Opt Express; 2024 Apr; 15(4):2708-2718. PubMed ID: 38633062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reproductive death of cancer cells induced by femtosecond laser pulses.
    Thøgersen J; Knudsen CS; Maetzke A; Jensen SJ; Keiding SR; Alsner J; Overgaard J
    Int J Radiat Biol; 2007 May; 83(5):289-99. PubMed ID: 17457754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear evolution of the plasma beat wave: Compressing the laser beat notes via electromagnetic cascading.
    Kalmykov S; Shvets G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046403. PubMed ID: 16711935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of broadband and ultrabroadband pulses at MHz and GHz pulse-repetition rates for nonlinear femtosecond-laser scanning microscopy.
    Studier H; Breunig HG; König K
    J Biophotonics; 2011 Jan; 4(1-2):84-91. PubMed ID: 20222101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350-MHz acousto-optic modulator.
    Zhou C; He C; Yan ST; Ji YH; Zhou L; Wang J; Zhan MS
    Rev Sci Instrum; 2020 Mar; 91(3):033201. PubMed ID: 32259991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electro-optic sampling of terahertz waves by laser pulses with an edge-cut spectrum in birefringent crystal.
    Ilyakov IE; Kitaeva GK; Shishkin BV; Akhmedzhanov RA
    Opt Lett; 2017 May; 42(9):1704-1707. PubMed ID: 28454140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.
    Kim DU; Song H; Song W; Kwon HS; Sung M; Kim DY
    Opt Express; 2012 May; 20(11):12341-9. PubMed ID: 22714221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.
    Kanya R; Morimoto Y; Yamanouchi K
    Rev Sci Instrum; 2011 Dec; 82(12):123105. PubMed ID: 22225197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of moving interference fringes for holographic recording onto a moving storage medium.
    Tatemichi H; Yamamoto M
    Appl Opt; 1993 Jul; 32(20):3700-5. PubMed ID: 20829997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Power-effective scanning with AODs for 3D optogenetic applications.
    Ricci P; Marchetti M; Sorelli M; Turrini L; Resta F; Gavryusev V; de Vito G; Sancataldo G; Vanzi F; Silvestri L; Pavone FS
    J Biophotonics; 2022 Apr; 15(4):e202100256. PubMed ID: 35000289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.