These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28437923)

  • 21. Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures.
    Knight MW; Fan J; Capasso F; Halas NJ
    Opt Express; 2010 Feb; 18(3):2579-87. PubMed ID: 20174087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer.
    Wang H; Li Z; Zhang H; Wang P; Wen S
    Sci Rep; 2015 Feb; 5():8207. PubMed ID: 25644597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications.
    Baida FI; Van Labeke D; Vigoureux JM
    Appl Opt; 1978 Mar; 17(5):858-66. PubMed ID: 20197882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic tunable inkjet-printed metamaterial absorber on paper.
    Ling K; Yoo M; Su W; Kim K; Cook B; Tentzeris MM; Lim S
    Opt Express; 2015 Jan; 23(1):110-20. PubMed ID: 25835658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-maintaining near-field optical probes.
    Patanè S; Cefalì E; Spadaro S; Gardelli R; Albani M; Allegrini M
    J Microsc; 2008 Feb; 229(Pt 2):377-83. PubMed ID: 18304100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.
    Mejia CA; Huang N; Povinelli ML
    Opt Lett; 2012 Sep; 37(17):3690-2. PubMed ID: 22940992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
    Smolyaninov II; Yost B; Bates E; Smolyaninova VN
    Opt Express; 2013 Jun; 21(12):14918-25. PubMed ID: 23787680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure.
    Kang B; Woo JH; Choi E; Lee HH; Kim ES; Kim J; Hwang TJ; Park YS; Kim DH; Wu JW
    Opt Express; 2010 Aug; 18(16):16492-8. PubMed ID: 20721037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime.
    Luo M; Shen S; Zhou L; Wu S; Zhou Y; Chen L
    Opt Express; 2017 Jul; 25(14):16715-16724. PubMed ID: 28789173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer.
    Saleki Z; Entezar SR; Madani A
    Appl Opt; 2017 Jan; 56(2):317-323. PubMed ID: 28085869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switchable metamaterial for enhancing and localizing electromagnetic field at terahertz band.
    Liu J; Zhang K; Liu X; Zhang Z; Jin Z; He X; Ma G
    Opt Express; 2017 Jun; 25(13):13944-13952. PubMed ID: 28788982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging.
    Habteyes TG; Dhuey S; Kiesow KI; Vold A
    Opt Express; 2013 Sep; 21(18):21607-17. PubMed ID: 24104035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays.
    Zou X; Zheng G; Cong J; Xu L; Chen Y; Lai M
    Opt Lett; 2018 Jan; 43(1):46-49. PubMed ID: 29328193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS).
    Ling K; Kim K; Lim S
    Opt Express; 2015 Aug; 23(16):21375-83. PubMed ID: 26367985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth.
    Wang L; Lou S; Chen W; Li H
    Appl Opt; 2010 Nov; 49(32):6196-200. PubMed ID: 21068847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-beam-driven collective-mode metamaterial light source.
    Adamo G; Ou JY; So JK; Jenkins SD; De Angelis F; MacDonald KF; Di Fabrizio E; Ruostekoski J; Zheludev NI
    Phys Rev Lett; 2012 Nov; 109(21):217401. PubMed ID: 23215613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic properties of multilayered gold nanoparticle 2D sheets.
    Yoshida A; Imazu K; Li X; Okamoto K; Tamada K
    Langmuir; 2012 Dec; 28(49):17153-8. PubMed ID: 23153010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Versatile computer program for absorbing optical thin film systems.
    Dobrowolski JA
    Appl Opt; 1981 Jan; 20(1):74-81. PubMed ID: 20309069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
    Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV
    Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene plasmonics for surface enhancement near-infrared absorptivity.
    Pan Q; Hong J; Zhang G; Shuai Y; Tan H
    Opt Express; 2017 Jul; 25(14):16400-16408. PubMed ID: 28789144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.